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ARTICLE INFO ABSTRACT

Keywords: Multiple waves of dispersion populated South America throughout the late Pleistocene and early Holocene. The
Anthrosols oldest rock art and artifacts in Caatinga are dated from 10,000 BP. Besides that, there is no register of ancient
Caatinga activities in soils in Caatinga. Four pedons were taken, described and classified in sites with a high number of
Dry forest

artifacts littering the surface and/or rock art. Five more pedons were described to represent soil without an-
thropic influence. Soils are shallow and transition between horizons was predominantly clear or abrupt.
Anthrosols in Caatinga have value and chroma similar to the anthropic horizons described in Amazonian dark
earths. The pedons are strongly acid to slightly alkaline and predominantly have base saturation above 50% in
all horizons. Anthrosols in Caatinga have up to 6 and 544 times, respectively, more soil organic carbon and
phosphorus compared to adjacent soils without anthropic influence. Besides illite and kaolinite, apatite and
calcite compose the clay and silt fractions and confirm the human influence in soil formation. Radiocarbon and
thermoluminescence dating indicate that Anthrosols in Caatinga are contemporaneous to the majority of

South America

Amazonian dark earths.

1. Introduction

Humans migrated along South America about 15,500 years ago
before present (BP) (Cramon-taubadel et al., 2017) and produced evi-
dences of occupation in wet tropical and subtropical biomes, as the
Amazonia rainforest (Clement et al., 2015), Atlantic rainforest (Araujo
et al.,, 2017), Brazilian cerrado (Souza et al., 2016), pampas region
(Dubois and Politis, 2017) and others. These humans did not only hunt
animals but transported plants and intentionally or accidentally burned
areas, which altered the vegetable composition of local habitats
(Dillehay, 2008; Hecht, 2003; Levis et al., 2017; Neves et al., 2004a,b;
Roosevelt, 2000).

Ancient human communities can be traceable by soil properties. In
Brazil, activities of indigenous populations in the pre-Columbian era
created high fertile soils in the Amazon rainforest. These soils are
classified as Anthrosols and commonly they are called Amazonian Dark
Earth due to their singular properties (German, 2003; Sombroek, 1966).
Anthrosols are described as profoundly modified soils by human ac-
tivities (IUSS Working Group WRB, 2014). Addition of organic or
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mineral material, charcoal or household wastes, or irrigation and cul-
tivation through time produce soils with high fertility, black or dark
brown color, strong grade structure and granular type, fragments of
ceramic, higher organic carbon, and higher P and Ca contents than the
surrounding pristine soils (Cunha et al., 2007).

Caatinga is the largest dry forest fragment in South America. It re-
mains suggested that humans occupied Caatinga at 9,670 years BP
(Alvim, 2008). Despite abundant non-dated paintings in caves and
boulders in the Brazilian Northeastern (Azevedo Netto and Oliveira,
2015), there is no register of ancient activities in soils. Caatinga is the
largest unit of seasonally dry forest biome in the Neotropics (DRYFLOR
et al., 2016). Amazonia and Caatinga soils differ considerably in terms
of depth, mineralogy, texture and water availability. These differences
can modify the interactions between soil processes and the conditions
of human artifacts, especially those of organic origin (bones, charcoal,
ash, shells, etc.), which are used as pedological indicators of ancient
human occupation. The hypothesis of the study is that ancient an-
thropic activities, like these in Amazonian dark earths, were installed
and promoted favorable contrasting physic-chemical characteristics
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Fig. 1. Location of Cariri Velhas (a); samples collected in the study area according to altitude (b); Sentinel 2A image of study area (c.1 and c.2).

compared to the surrounding soils in Caatinga. Therefore, the objective
of this study was to present anthropic soils in the Caatinga. These re-
sults may extend the current debate of ancient human occupation in the
Brazilian Northeast and the landscape evolution. Besides the report of
soils affected by ancient humans in semiarid climate being able to im-
prove the definitions and diagnostic criteria of Anthrosols in soil clas-
sification systems.

2. Study area

The study area encompasses the Cariri Velhas region, located in the
Paraiba state. It has a total area of approximately 11,225.736 km? and a
particular landscape diversity (Fig. 1). Altitudes vary between 400 m, in
pediment surface, and 1,100 m, in highlands, cliffs and inselbergs as-
sociated with resistant rocks and horst-graben systems (Xavier et al.,
2016). Faults created by uplift of granite and granitoid during the
Brasiliano cycle and weathering favored individualization and rounding
of blocks (Correa et al., 2010). Mass movements of these blocks formed
fields of giant granitic boulders in the talus of inselbergs and cliffs.

Cariri Velhas is one of the driest regions in Brazil. Areas at lower
altitudes (in the pediment surface) have a mean precipitation of
350 mm year ! and potential evapotranspiration four times higher than
precipitation and mean temperature of 27 °C (Kayano and Andreoli,
2009). On the other hand, areas at higher altitudes (on and around the
highlands), have peculiar climatic dynamics derived from a local type of
“valley-mountain” circulation, thus favoring the occurrence of oro-
graphic rains, fog and high number of springs. A meteorological station
installed in 2017 indicated mean precipitation and temperature of
466.2 mm year ' and 20.9 °C in highlands, respectively (non-published
data). Although the data series is shorter than 30 years, we highlight that
it is the first and the only meteorological station in the highlands.

The vegetable cover in Cariri Velhas has large endemic biodiversity
(APG, 2016; Costa and Peralta, 2015; Maia et al., 2015). Shrubs, 3-9 m
height-trees that shed their leaves seasonally, cacti and arid-adapted
grasses partially cover the soil (Prado, 2000; Santos et al., 2012).
Weathering of minerals and rocks is incipient, and the soil is intensively
eroded during the four rainy months. Luvisols (40.9% of the total area),
Leptosols (35.6%) and Regosols (3.9%) dominates the Cariri Velhas
(Aratjo Filho et al., 2017). These soils are dominantly loamic, shallow
(< 1 m deep), eutrophic and have low organic carbon content (Ferreira
et al., 2018; Giongo et al., 2011; Menezes et al., 2012; Riickamp et al.,
2010).

The register of ancient human activities dated from 12,400 to
8,000 years BP are abundant in Northeastern Brazil (Bueno, 2011). In
general, the archaeological sites are close to perennial rivers, which are
important to water and wood supply, and indicate that the largest rivers
were migration routes to the interior of Northeastern Brazil during
Pleistocene-Holocene (Bueno et al., 2013; Kelly, 2003).

Little is known about archaeological context of the Cariri Velho once
there is no register of archaeological sites (Brazil. Ministry of Culture.
Artistic Heritage, 2018). The study area encompasses the highlands oc-
cupied by ancestrals of the Kariri, an indigenous population from which
information is scarce (Lima et al., 2002). The scarce studies suggest that
these ancient communities were hunters and gatherers living in mobile
bands, but it included fishermen as well as hunter-gatherers who prac-
ticed some cultivation and were, consequently, sedentary for at least part
of the year (Aratjo et al., 2003; Kelly, 2003).

3. Material and methods

Four soil profiles were taken, described and sampled in sites with
evidences of ancient human occupation (painting ash, ceramic and
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bones in the soil surface, etc.). Another five soil profiles were taken to
represent non-anthropic soils in the main geological materials and soil
groups from Caatinga (Fig. 1). All pedons were classified according to
the World Reference Base soil classification system (IUSS Working
Group WRB, 2014), Soil Taxonomy (Soil Survey Staff, 2010) and Bra-
zilian Soil Classification System (Santos et al., 2013). Soil samples were
collected in order to represent each horizon from the surface down to
the lithic contact at each pedon. For deeper soils, a 100 cm control
section was used. The archaeological material discovered was reported
to National Historical and Artistic Heritage Institute (IPHAN).

Samples were air dried and sieved through a 2 mm sieve prior to
texture and chemical analyzes according to methods established for
tropical soils (Donagema et al., 2011). Coarse sand (CS), fine sand (FS),
silt and clay were determined by the pipette method after dispersion
with 0.1 M NaOH. Soil pH was measured with a glass electrode in a
1:2.5 suspension v/v soil and deionized water (pH H,0) and 1 M KCl
solution (KCl pH). The potential acidity (H + Al) was extracted by 1 M
ammonium acetate solution at pH 7. The content of exchangeable Ca>*,
Mg?* and AI** was determined in a 1 M KCl extract. Exchangeable K*
and Na™ were determined after Melhich-1 extraction. From these re-
sults, the sum of bases (SB), base saturation (V), aluminum saturation
(m), equivalent cation exchange capacity (ECEC), total cation exchange
capacity (CEC) and Na saturation (ISNA) were calculated.

The available phosphorus content (Py) was determined by a
Mehlich-1 extraction solution. The total organic carbon (C) was de-
termined by wet combustion (Yeomans and Bremner, 1988). The P
adsorption capacity of the soil was determined after stirring it for 1 h
with 2.5 g of soil in 0.01 M CaCl, containing 60 mg of P L. The sus-
pension was filtered and the remaining P in the solution (Pgrgy) was
determined by photocolorimetry (Alvarez et al., 2000). Therefore, the
lower the value of P-rem, the higher the affinity of soils for the P in the
solution.

X-ray diffraction (XRD) analyses were conducted on clay, silt and
sand-size fractions from the soil profile n° 3, because of its higher
quantity of ash, bones and artifacts. XRD patterns were collected using
a PanalyticalX’Pert PRO (CoKa radiation) between 4 and 50 °26, at a
scan speed of 0.1 °28sec’, working with a potential of 40 kV and a
current of 40 mA.

Aluminum and Fe concentrations were quantified after five se-
quential extractions, using the dithionite-citrate-bicarbonate method
(DCB) at pH 7.3 (Mehra and Jackson, 1953) and after one extraction by
the acid oxalate method (AOD) in darkness at pH 3.0 (McKeague and
Day, 1966); these procedures were executed in the horizons which have
the highest and lowest P content. Molecular Feo/Fed was calculated
using the Fe concentrations extracted by ammoniumoxalate (Feo) and
dithionite-citrate-bicarbonate (Fed). This ratio was used as an index of
crystallinity degree of Fe oxides, interpretation of pedogenic processes
and intensity of weathering (Kdmpf and Curi, 2000). The Al and Fe
concentrations extracted via selective dissolution with DCB and AOD
were quantified by atomic absorption spectrophotometry.

A charcoal sample of soil profile n° 3 was dated by '*C. The dating
process was carried out by benzene synthesis/liquid scintillation
counting at the Radiocarbon Laboratory at the Center for Nuclear
Energy in Agriculture, University of Sdo Paulo (Pessenda and Camargo,
1991). Prior to dating, the sample was chemically pretreated with HCl
4% for 4 h at 60 °C, washed with deionized water to neutral pH con-
ditions and dried at 50 °C. The radiocarbon age is expressed in years BP
(Before Present, CE 1950, 10), normalized to §13C of —25%o0 VPDB and
calibrated (20) as cal years BP (Reimer et al., 2004). The result is re-
presentative of the mean age of the charcoal fragment in the horizon
10-20 cm depth of soil profile n°. 3. Lab number is CEN 1280.

A ceramic in 14 cm depth of soil profile n° 3 was dated according to
the thermoluminescence technique. This soil profile was chosen be-
cause its abundance of archaeological materials. Thermoluminescence
dating is a common procedure utilized to this determination, by means
of measuring the accumulated radiation dose, of the time elapsed since
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minerals in anthropogenically heated materials were heated above
450 °C.

The remaining ceramic sample was gently crushed using a benchtop
vice. Carbonates were removed by HCl treatment. Multimineral silt-size
grains were obtained using standard luminescence sample preparation
techniques and treated with 10% H>0- to consume organic compounds.
The total radiation dose accrued in quartz grains (De) was determined
through thermoluminescence glow curve analysis (Supplementary ma-
terial Figure S.1). Four aliquots were used for equivalent dose de-
termination. 2*2Th, 238U +23°U and “°K contents were utilized to cal-
culate the dose rate (R). Fine particles found in the same profile were
utilized to estimate the dose rate from the radioactive elements to
which the ceramics were exposed. The age of the ceramic is deduced
from the ratio of the accrued dose (De) to dose rate (R) plus burial
adjustment. Thermoluminescence measurement was performed by the
DATAGAOQ Laboratory (Dating, Commerce & Services Provision LTDA —
Sao Paulo/SP).

4. Results
4.1. Soils with anthropic influence

All soil profiles were dug in fields of giant granitic boulders in the
talus of inselbergs and cliffs (Table 1 and Fig. 2). Quartz and feldspar
occur as gravel in all soil profile and indicates that SP2 is derived from
granite. All soil profiles were described in caves in granite. The area of
sites varies between 100 and 18,205 m?2. Elaborated Pre Columbian-
painting style, notably including red- and/or black-on-white painted,
and complicated modeled designs are observed in all sites
(Supplementary material Figure S.2). Future archaeological studies
should analyze these paintings.

Pedons were classified as Entisols according to Soil Taxonomy,
which corresponds to the order of Neossolos, respectively, in the
Brazilian Soil Classification System. Topsoils are classified as anthropic
epipedon according to the Soil Taxonomy and as horizonte A antropico
according to the Brazilian Soil Classification Sytem. In general, the
following criteria of pretic epipedon are fulfilled: (i) Munsell color
value of <4 and a chroma of <3, both moist; (ii) 2. = 1% organic
carbon; (iii) exchangeable Ca plus Mg (by 1 M NH40OAc, pH 7) of =2
cmolc kgf1 fine earth; (iv) =30 mg kg’1 of extractable P (Mehlich-1);
(v) = 1% charcoal, and; (vi) < 25% (by volume, by weighted average)
of animal pores, coprolites or other traces of soil animal activity. So,
except by the thickness, all criteria of pretic horizon are fulfilled. The
thickness of pretic horizon ranges from 12 to 30 cm. We classified all
soils with anthropic influence as Anthrosols according to the World
Reference Base soil classification system. The depth of the Anthrosols
varied between 10 and 50 cm with a mean of 29.25 cm. All soil profiles
did not respond to a hand magnet suggesting the absence of ferrimag-
netic material.

The texture is dominantly sandy loam and coarse sand (CS) dom-
inates fine particles. The pedons are strongly acid to strongly alkaline
and have predominantly base saturation (V) above 50% in all horizons
(Fig. 3). Ca®* > Mg?* > K* > Na™ is the base dominance in the ex-
change complex (Supplementary material Table S.1). The Ca®* con-
centration is dominantly above 1 cmolc kg~ . In general, the total or-
ganic carbon (C), Ca®" and extractable P by Mehlich-1 (Py;) content
decrease with the increase of depth. The C content in the upper horizon
ranged between 0.47% and 15.94%. In the 10-50 cm increment, the C
concentrations ranged from 0.31% to 2.95%. The Py content in the
upper horizon ranged from 196.6 mg kg ™! to 5,231.2 mg kg~ *.

The first soil profile (SP1) was classified as Pretic Anthrosol
(Pantoothodystric, Pantoloamic, Epiprotechnic). SP1 was described
inside a cave in granite at 509 m. Soil is well-drained, with evidences of
slight laminar erosion. The surface of the soil is barely covered by
sparse grasses and no litter occur. Rock art in the cave indicate ancient
human occupation in an area of 2,829 m?. At the surface, the SP1 shows
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Soil profile n° 1 Soil profile n° 2

Soil depth (cm)

Soil depth (cm)

Soil depth (cm)

Soil depth (cm)

20

25+

Archaeological material*

sandy loam texture ‘charcoal . debitage
sandy clay loam texture ‘ potsherd @ bottom ash

granite = bones * TL sample

Fig. 2. Location of soil profile with anthropic influence (a); the archaeological site of soil profile n° 1 (b), and stratigraphy of soil profiles n° 1 to 4 (c).

irregular and angular potsherd (Table 2). All horizons have archae-
ological materials with the same characteristics as the surface soil, al-
though a decrease of its content is observed. The first horizon is dark
grayish brown (10YR 4/2) and its structure is strong medium sub-
angular block that is hardly manually disturbed. The second, third and
fourth horizons were discriminated by a slightly increase of clay con-
tent. The color of the three deeper horizons is dark yellowish brown
(10YR 3/4). A weak fine and subangular block structure is observed
from the second horizon to lithic contact. Roots and pores are common
in the all horizons. The texture of SP1 is dominantly sandy loam and a
slightly increase of clay content in deeper horizons was noticed (Fig. 3).
SP1 is strongly acid to moderately acid (Supplementary material Table
S.1). Anthropic epipedon (ST) and horizonte A antrdpico (SiBCS) were
identified. Although the content of Ca®*, Mg®* and C are below the
defined to the pretic horizon (WRB), we defined the topsoil as pretic
horizon due to its marked human influence.

The second soil profile (SP2) was classified as Pantopretic Anthrosol
(Pantohypereutric, Pantoloamic, Epienfoleptic, Pantotechnic). SP2 was
described inside a cave in granite at 552 m. Soil is well-drained, with
evidences of slight laminar erosion. Vegetation cover and litter are
absent. Rock art in the cave indicate ancient human occupation in an
area of 18,205 m>. The SP2 shows charcoal fragments since the surface
(Table 2). The first horizon is black (5Y 1/1) and its structure is weak
fine subangular block that is easily manually disturbed. The continuum
rock is at 12 cm depth. Roots are absent and pores are few and fine. The
texture of SP2 is sandy clay loam. SP2 is neutral and has expressive high

values of Py, Ca®*, Mg>* and C contents (Fig. 3). Pretic horizon
(WRB), anthropic epipedon (ST) and horizonte A antrépico (SiBCS) were
identified.

The third soil profile (SP3) was classified as Pantopretic Anthrosol
(Pantoalcalic, Pantoloamic, Escalic, Endoleptic, Epiprototechnic). SP3
was described in a human terrace made inside a cave in granite at
722 m. Soil is well-drained, with evidences of slight laminar erosion.
The surface of the soil is barely covered by sparse grasses and no litter
occur. Rock art in the cave indicate ancient human occupation in an
area of 2,710 m? At the surface, the SP3 shows irregular and very
angular potsherd (Table 2). The first and second horizons have ar-
chaeological materials with the same characteristics as the surface soil.
The first horizon is very dark grayish brown (10YR 3/2) and its struc-
ture is weak fine subangular block that is easily manually disturbed.
The color of the second horizon is olive brown (2.5Y 4/3) and its
structure is weak medium subangular block. The third and fourth
horizons have a fine subangular block structure poorly developed. The
content of archaeological materials increases considerably at the con-
tact between second and third horizons. Besides potsherd, the third and
fourth horizons contain debitage and charcoal fragments. In addition to
coal, the use of fire is indicated by the presence of bones and small
charred materials. The colors of the third and fourth horizons are very
dark grayish brown (2.5Y 3/2) and very dark gray (2.5Y 3/1), respec-
tively, due to the concentration of charcoal. Radiocarbon dating on
charcoal indicates 1,100 = 80 years B.P. Similar age was obtained on
quartz grains in ceramic by thermoluminescence (Table 3).
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Fig. 3. Physic-chemical soil properties of soil profiles with anthropic influence.

The texture of SP3 is sandy loam. The clay fraction of SP3, identified
via XRD pattern, was composed by illite, kaolinite, calcite and apatite
(Fig. 4). The presence of illite and kaolinite was confirmed in the clay
fraction via interplanar spacing (d) of 1.014 and 0.726 nm, respectively.
The phosphate minerals showed interplanar spacing (d) of 0.303 and
0.278 nm to calcite and apatite, once they have very close reflection
and chemical composition. Quartz, mica, anatase, albite, oligoclase,
apatite, calcite and traces of kaolinite were identified in the XRD pat-
tern from silt and sand fractions (Fig. 5). Iron concentrations extracted
by ammoniumoxalate (Feo) and dithionite-citrate-bicarbonate (Fed) in
the third horizon were lower than 1% (Table 3). Aluminum con-
centrations extracted by DCB and AOD were up to 21 and 156 times
higher than Fe, respectively. SP3 is slightly alkaline to moderately al-
kaline. The second and third horizons have some the highest contents of
Ca®" and Py (Fig. 3).

The fourth soil profile (SP4) was classified as Pantopretic Anthrosol
(Pantoalcalic, Pantoloamic, Escalic, Endoleptic, Epitechnic). SP4 was
described inside a cave in granite at 703 m. Soil is well-drained, with
evidences of slight laminar erosion. Vegetation cover and litter are
absent. Rock art in the cave indicate ancient human occupation in an
area of 100 m2 SP4 has no archaeological materials in the surface
(Table 2). The color of the first and second horizons are gray (5Y 5/1)
and their structure is medium subangular block. In the third horizon are
observed lithic materials, such as chalcedony and quartz. It also con-
tains bottom ash. The black (5Y 2.5/1) color of this horizon indicates
that it is remnant of a bonfire. The texture of SP4 is sandy loam. SP4 is
moderately alkaline to strongly alkaline (Supplementary material Table

S.1) and has the lowest Py contents (Fig. 3). Pretic horizon (WRB),
anthropic epipedon (ST) and horizonte A antrdpico (SiBCS) were iden-
tified.

4.2. Soils without anthropic influence

The soil profiles were dug in partially dissected pediments, slopes,
cliffs and a fluvial channel to represent the soil diversity of Caatinga
without anthropic influence (Table 1). These soils were classified as
Regosols, Fluvisols, Luvisols and Umbrisols, which are equivalent to
Neossolos and Luvissolos (Entisols and Alfisols) according to the Bra-
zilian Soil Classification System (Soil Taxonomy). Ochric epipedon is
dominant. Evidences of ancient anthropic influence (ash, bones,
ceramic etc.) are absent.

The depth of soils without anthropic influence is slightly deeper
than Anthrosols; they varied between 40 and 70 cm, with a mean of
51 cm. The thickness of ochric horizon ranges from 5 to 20 cm. The
structure is absent to strong developed, with subangular blocky type
dominantly (Table 2). The soil hue varies from Gley to 2.5YR. All soils
are shallow and transition between horizons was predominantly clear.

The texture of soils without anthropic influence varies from sandy to
clay. The coarse sand (CS) dominates fine particles (Fig. 6). The pedons
are strongly acid neutral and have base saturation (V) above 50% in all
horizons, except those of Umbrisol (Supplementary material Table S.1).
The Ca®* concentration is dominantly above 1 cmolc kg~'. As An-
throsols, the total organic carbon (C) and extractable P by Mehlich-1
(Pyp) content decrease with the increase of depth. The C content in the
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Fig. 4. XRD patterns collected from clay mineral (oriented powder). Il = Illite; Ka = Kaolinite; Ca = Calcite; Ap = Apatite.

upper horizon ranged between 0.58% and 3.44%. In the 10-50 cm
increment, the C concentrations ranged from 0.23% to 1.33%. The Py
content in the upper horizon ranged from 1.3 mg kg ~* t0 98.2 mg kg .

5. Discussion
5.1. How are Anthrosols in Caatinga different?

The pedological properties of Anthrosols are anomalous in Caatinga.
They exhibit evidences of ancient anthropic occupation, in which the
combination of relatively intense erosion of surface horizon, low pre-
cipitation and high potential evapotranspiration favors the formation of
soils with high organic C and P contents compared to soil without an-
thropic influence. These soils have up to three, six and 671 times, re-
spectively, more soil organic carbon, exchangeable calcium and phos-
phorus compared to adjacent soils (Supplementary material Table S.1).

These anomalies are attributed to the anthropic influence. Even
when the artifacts are present in relative small quantities they affect
significantly physical and chemical soil properties (Glaser, 2007). An-
throsols in Caatinga have H,O pH similar to Anthrosols described in the
Amazonia rainforest (Supplementary material Table S.1). Neutral to
alkaline pH is attributed to the abrasion pH of ceramic. The hydrolysis
of base cations from abraded surfaces of phyllosilicates which compose
ceramics releases hydroxyls (Howard, 2017). Furthermore, less
common slightly acid pH, as observed in ‘Anthropic’ Typic Ustothents,
can be attributed to hydrolysis of AI** (or Fe**) exposed at the broken
edges of phyllosilicates. High Ca and P contents are attributed to bones
and organic-metallic complexes (Glaser et al., 2000; Novotny et al.,
2007; Howard, 2017).

The more developed structure of Anthrosols compared to soils
without anthropic influence is attributed to the high organic carbon
content (Campos et al., 2011; Macedo et al., 2017). Although the pro-
portion of charcoal of Anthrosols in Caatinga is 5 times lower than in
Amazonian dark earths (Macedo et al., 2017), it seems enough to re-
duce value and chroma. The value and chroma are similar to the an-
thropic horizon described in Amazonian dark earths (Campos et al.,
2011). The melanization is attributed to the incorporation of organic
remains (German, 2003) and to the stabilization of organic compounds
such as charcoal (Cunha et al., 2007).

The high background in diffractogram and low reflection intensity
indicate low crystallinity minerals (Fig. 4). Presence of phosphate mi-
nerals, even in the clay fraction, can be justified by anthropic addition
of bones and low weathering under semiarid climate of the study area
(Oliveira et al., 2018). This promotes the formation of poorly crystal-
lized minerals (Klug and Alexander, 1974), increase in XRD background
and decrease in reflection intensity. The low degree of crystallinity of
clay minerals can be attributed to high pH, P and Ca contents, as well as
to organic carbon graphitized compounds and calcined remnants of
shell temper used in the manufacture of the ceramic vessels (Souza
et al., 2016).

High values of Prgy indicates virtual absence of Fe oxides. Goethite,
hematite and other Fe oxides have a high affinity for phosphate (Fontes
and Weed, 1996; Weng, 2014). Besides that, the low Feo and Fed in-
dicates the inhibitory effect to Fe-oxide and vivianite formation exerted
by semiarid climate, leucocratic parental material and soil organic
matter (Glasauer et al., 2003). The overall mineralogy from silt and
sand are in agreement with the parent material of these soils and its
maintenance in these fractions by semiarid climate (Cunha et al., 2010).
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Fig. 5. XRD patterns collected from sand and silt fractions (random powder). Qz = quartz; Mi = mica; An = anatase; Ab = albite; Og = oligoclase; Ap = apatite;

Ca = calcite; Ka = Kaolinite; Hm = Hematite.

Distinct to Amazonian dark earth (Novotny et al., 2007; Petrovsky
et al., 2001), low magnetization in Anthrosols in Caatinga is attributed
to low Fe content and virtual absence of Fe oxides (Table 4 and Fig. 4).
The degree of magnetization depends on the amount of magnetite,
maghemite, element iron and heavy metals present in earth material.

High organic carbon and P contents below 30 cm depth can be at-
tributed to leaching. Loamic or coarser texture of shallow Caatinga soils
favors lessivage of organic compounds and melanization of all pedon.
Particles of density < 2.0 g cm ™2 have the highest contents of black
carbon and can be easily leached from surface horizons. P leaching is
favored by low clay content and virtual absence of Fe oxides, which
would otherwise adsorb P as mono and polydentate forms (Novais and
Smyth, 1999).

The incomplete combustion creates highly reactive and stable con-
densed aromatic structures known as black carbon. The higher organic
C content in dark earths compared to non-anthropic soils in Caatinga is
attributed to ash and charcoal (Glaser et al., 2000). Higher humification
in dark earths can also be related to the high Ca contents, which reduces
solubility of organic matter by forming more stable aggregates (Lima
et al., 2002).

5.2. Genesis of Anthrosols in Caatinga

Properties of anthropic horizon are highly variable according to
pedoenvironments and intensity of occupation (Fraser and Clement,
2008; Heckenberger et al., 1999; Kern et al., 2009; McMichael et al.,
2012). The data suggest that the sites are degraded and/or, were less
populated compared to the Amazonian dark earth.

Radiocarbon dating and thermoluminescence indicate that
Anthrosols in Caatinga have the same age of the majority of Amazonian
dark earth (Heckenberger et al., 1999; Neves et al., 2004a,b; Meggers &

10

Miller, 2006; Silveira et al., 2011). Palynological evidence indicates
establishment of the current semiarid climate in the region approxi-
mately 8,500 years before the present (Medeiros et al., 2018). So, these
results reveal the past cultures from Caatinga in a new, much more
complex light. Amazonian dark earth is commonly located between 5
and 25 m above the closest river (Kern et al., 2009). If this trend is kept
in xeric climates, Caatinga dark earth can indicate paleochannels.
Eighty percent of Amazonian dark earths cover areas between 0.5 and
2 ha and commonly the anthropic horizon has 30 to 60 cm of thickness
(Kern et al., 2009). Once Caatinga dark earths cover smaller areas and
are shallower, we think that these soils are evidences of paleochannels
and nomadism.

Contrary to the patterns recognized in the Amazonian lands
(Schmidt et al., 2014), Anthrosols in Caatinga are found in small
shelters in crystalline rocks, regionally known as “locas”, near to springs
and, or, cavities in rocks (tafone), denominated popularly as “tanques”.
These tafone accumulate water, even during severe droughts. This
strengthens the idea of a pattern of displacement of these ancient
communities to refuges, traced by cave paintings (Azevedo Netto and
Oliveira, 2015).

It is stated that Amazonian dark earth was a “kitchen midden” soil,
where fishing, cultivation or occupation sites of pre-Colombian in-
digenous incorporate a quantity of organic matter which is enough to
improve soil fertility (Sombroek, 1966). Although the high fertile soils
dominance in Caatinga, lack of agricultural potential due to semiarid
climate induces nomadism (Leal, 2001; Pompeu Sobrinho, 1934; Rull,
2010). Besides the absence of plant refuse and animal and fish bones
suggest that these humans did not cultivate or try to incorporate ni-
trogen and other nutrients in soil. A small human made terrace ob-
served suggest the intention to reduce soil erosion in occupied areas
(Table 1). Such habits can be attributed as adaptation to establishment
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Fig. 6. Physic-chemical soil properties of soil profiles without anthropic influence.

Table 4
Dithionite-citrate-bicarbonate (DCB), acid oxalate method at darkness (AOD),
and molar ratios of selected samples.

Soil profile Depth DCB AOD Feo/Fed
Fe,03 Al,03 Fe,03 Al,O3
cm %
SP3 10-20 0.21 4.43 0.06 9.53 0.30
SP4 10-15 0.26 3.89 0.03 2.49 0.12

of drier and hot climates in the past 6,790 years BP (Alvim, 2008).
Based on abundance of paintings and ceramic, we believe that high-
lands may have been a refuge to ancient humans in the Brazilian
Northeastern during extreme dry years.

5.3. Conclusions

Anthropic influence in soil formation in Caatinga were traceable by
higher P, Ca?* and organic carbon contents. Although these soils are
contemporaneous of Amazonian dark earth, they have different physic-
chemical and mineralogical properties derived from incipient weath-
ering and pedogenesis.

Amazonian dark earth and high productive soils of the Aztec civi-
lization are commonly classified as Pretic Anthrosols. Soil profiles n° 2,
3 and 4 have all requirements to be classified as Anthroposols, except
by the thickness below 50 cm. So, we suggest a review of its thickness.
Furthermore, we suggest the inclusion of the class ‘Antrosolos’ in the
Brazilian Soil Classification System and ‘Anthrosols’ in the Soil
Taxonomy, once soils that have been profoundly modified by human
activities occur beyond the borders of Amazonia and of the Atlantic
coast.
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