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Abstract Paleoecological and geomorphological studies
indicate that, during the middle Holocene, there was a
predominance of drier conditions with grassy savannahs
replacing forests across the South American continent.
Modern savannahs are composed mainly of C4 plants
and soils developed under this type of vegetation show
enrichment in 13C compared to soils under C3 vegetation
covet. If soi1ls contain stabilized organic matter formed in
the middle Holocene, we hypothesize that former C4
vegetation would be evidenced by a large enrichment of
BC in soil organic matter (SOM). We investigate this
possibility examining the depth variation of carbon isoto-
pic composition in 21 soil profiles collected by different
researchers at 14 different sites in Brazil. Of these, pro-
files from only three sites showed a marked increase of
BC with depth (9-10%c enrichment in 813C difference
between the surface soil and deepest depth); two sites
showed mtermediate enrichment (4-5%¢), and nine sites
showed a small enrichment of approximatelly 2.5%e. The
majority of sites showing all-C3 derived SOM were in
the Amazon region. Possible causes for the absence of a
large 13C enrichment with depth are: (1) dominance of

C3 rather than C4 grasses in mid-Holocene savannahas, .

(2) soil profiles did not preserve organic matter derived
from mid-Holocene plants, (3) the retreat of forest areas
did not occur on a regional scale, but was a much more
localized phenomenon.
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Introduction

So01l organic matter (SOM) is a complex mixture of com-
pounds from different pools, ranging from very labile
compounds with very fast cycling times to refractory
components that accumulate over millenia (Trumbore
1993). These attributes are susceptible to climate change,
which can cause alterattons in organic matter inputs and
rates of decomposition (Jenkinson et al. 1991). The cu-
mulative response of SOM behavior to past and future
changes 1s a significant factor in the global carbon cycle
(Prentice and Fung 1990; Tans et al. 1990; Jenkinson et

al. 1991).
Paleoecological and geomorphological studies sug-

“gest the occurrence of severe climatic changes in the

South American continent. It has been hypothesized that

there were drier periods during the Pleistocene and Ho-

locene than the present, when the tropical forest was re-
placed by savannah-like vegetation, with predominance
of grasses (Van der Hammen 1974; Absy and Van der
Hammen 1976; Absy 1980; Ab’Saber 1982; Bigarella
and Andrade-Lima 1982; Leyden 1985; Markeraf 1989;
Bush et al. 1990; Bush and Colinvaux 1990; Markeraf
1991, Absy et al. 1991). The maximum in the proportion
of grass pollen was found in the middie Holocene from
ca. 0,000 to 4,000 years before present (BP) for several
placed m South America (Absy 1980; Servant et al.
[989: Markgraf 1989; Absy etal. 1991; Ledru 1992,
1993; Servant et al. 1993), from 10,500 to 10,400 years
BP for central Brazil (Servant et al. 1989, 1993: Ledru
1993), and ca. 13,000 years BP for eastern Amazonia
(Absy et al. 1991).

It these grasses were of the C4 type, it may be possi-
ble to tind a residual isotopic signal preserved in soil
protiles. Depending on the degree of ’C enrichment in
SOM with depth, two basic processes could explain the
observed trends



1. If the 13C enrichment with depth is small, the decom-
position of organic matter, which favors '2C, is most
likely the cause of the trend.

2. If the 13C enrichment with depth 1s large, 1t 1s a strong-
er indication that the signal 1s due to the previous exis-
tence of 13C-enriched vegetation, probably C4 grasses.

We explore those possibilities through the analyses of
the stable carbon isotope composition of 21 soil profiles
collected at 14 sites i Brazil, encompassing different
soil types and climatic conditions (Volkott et al. 1982;
Desjardins et al. 1991; Valencia 1993; Pessenda et al.
1995; Trumbore et al. 1995). Radiocarbon data for the
organic matter from the same soil protiles provide an es-
timate of the minimum age of stabilized C4 organic mat-
ter.

Methods

Locations. of soil profiles are shown in Fig. 1. A total of 21 soil
profiles at 14 sites, encompassing ditferent climate regimes and
soil types were collected (Table 1). Of these sites 7 were located in

Fig. 1 Upper panel map of
Brazil showing the geographi-
cal location of soil profiles.
Stars indicate sites where the
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the Amazon basin, which 1s characterized by high temperature and
heavy rainfall (Fig.- 1). Three other profiles were also collected 1n
areas of high average temperatures: Juacema, Nhecolandia and
Salitre. The first one 1s located in the northeast region of Brazil,
which 1s mainly characierized by low ramnfall (Fig. 1). The
Nhecolandia profile was collected in the Brazilian Pantanal, one of
the largest floodplains in the world, and the Salitre profile was col-
lected in the southermost region of Brazil (Fig. 1). In arecas of low-
er average temperatures, six profiles in four different places (Sao
Roque, Piracicaba, Londrina and Tunas) were collected (Fig. 1).
Soil types differed among places (Table 1). The most common soil
types in Brazil, Lafossolo and Podzdlico, which are equivalent to
ultisols and oxisols in the American classification system, were
present at most sampling sites (Table 1). Soils classified as Terra
Roxa Estruturada (equivalent to alfisols) were present at two sites,
and finally Cambissolo and Areia Quaritzoza, both equivalent to
inceptisols, were present at one site each. In all sampling sites the
vegetation was the primary forest characteristic of each region.

Details of soil samphing and soil characteristics can be found
elsewhere (Cerr1 1979; Volkoff et al. 1982; Soubies and Chauvel
1985; Martins et al. 1991; Higa 1989; Rocha 1990; Valencia 1993,
Pessenda et al. 1996; Trumbore et al. 1995). Analysis of carbon
isotopic composition, expressed as 013C, were not always carried
out by the same authors that collected soil samples. (A list of those
authors can be found in Table 1.) Radiocarbon ages, expressed as
years before present (years BP), were available for profiles located
at Piracicaba, Londrina, Altamira, Salitre, Nhecolindia and Para-
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Table 1 Sites of soil sampling (numbers in parentheses indicate the number of profiles collected at each site) following by soil type ac-
cording to the Brazilian classification system; soil texture; mean annual temperature, rainfall and climate type

Code — Site Brazilian classification Texture Mean Mean annual Climate References
annual rainfall
iemperature
e
Man — Manaus (1) [.atossolo Amarelo Clay 27°C 2100 mm Trop. humid a
Alt — Altamira (2) Terra Roxa Estruturada Clay 27°C 1650 mm Trop. humd b, c,d
Cpo-Capitdo Poco (1) Latossolo Podzolisado Silty-clay  27° C 2500 mm Trop. humid e, ¢
~ Par — Paragominas (3) atossolo Amarelo Clay 27° C 1750 mm Trop. humid t
Ori — Oriente Novo (1)  Latossolo Vermelho-Amarelo  Silty-clay  25°C 2200 mm Trop. humid g C
Dom — S. Domingos (1) Podzélico Vermelho-Amarelo  Silty-clay  25°C 2200 mm Trop. humid gc
Ten — Terra Nova (1) Cambissolo Silty-clay  25° C 2300 mm Trop. humid h, ¢
Jua-Juacema (1) Latossolo Silty-clay  25°C 500-1000 mm  Trop. semi-arid &°©
Pan — Nhecolandia (1) Arela Quartzoza Sandy 25° C ] 280 mm Trop. humid 1
Sal — Salitre (2) Latossolo Vermelho-Amarelo  Clay 24° C 1700 mm Subtropical i
Sro — Sao Roque (1) Podzolico Sandy-clay 21°C 1200 mm Subtropical & ¢
Pir — Piracicaba (2) Latossolo Vermelho-Amarelo  Clay 20° C 1200 mm Suptropical d. g
Lon — Londrina (2) Terra Roxa Estruturada Clay 19° C 1250 mm Suptropical d. g
Tun — Tunas (1) Latossolo Podzolisado Silty-clay  18°C 1400 mm Temperate 8 ¢

2 Volkoff et al. (1982) soil description and o!13C analysis
b Rocha (1990) soil description

¢ Desjardins et al. (1991) o13C analysis

d Valencia (1993) o13C analysis

e Martins et al. (1986) soil description

gominas and these analyses were conducted by Valencia (1993)
for the first three profiles, and by Pessenda et al. (1996), Victoria
et al. (1995), and Trumbore et al. (1995} for the three last profiles,

respectively.

Results and discussion

The contemporary vegetation cover of all sites was pri-
mary forest (C3 plant type), and the 013C of the surface
soil organic matter varies from —28.5 to 26.0%ec. In order
to make the comparison among different profiles easier,
the depth variability of the carbon isotopic composition
in each profile was expressed as the difference of the
013C of a soil depth in relation to the 013C value of the

most superficial sampling depth. We call this difference
ABC, defined as:

137 = 313 - —al3
ABC =6 Cdepth 0 Csurf&ce

where 013C_ ... is the value of the surface soil and
O13C ey, 18 the value at a given depth. Al°C values were
mostly positive, reflecting the fact that o!1°C values in-
creased with depth in nearly all soil profiles.

Results were grouped according to the A3C values.
Figure 2A and B shows profiles with the smallest Al°C
values. The profiles with the highest A13C are shown in
Fig. 2D and profiles with intermediate to small values ot
ABC are grouped in Fig. 2C.

Most of the soil profiles with the smallest AI3C values
(Fig. 2A and 2B) are from the Amazon Basin (Fig. 1). In
these profiles the highest A*C value was 3.5%0, but most
of the values were smaller than 2.5%», which 1ndicates
that the major cause of 13C enrichment with depth was
probably fractionation during decomposition of SOM.
The only exception to this pattern was the depth variabil-
ity observed in the Terra Nova profile, where the AI3C

f Trumbore et al. (1995) soil description and 013C analysis
s Cerri (1979) soil description

h Higa (1989) soil description

| Victoria et al. (1995) soil description and 613C analysis

i Pessenda et al. (1996) soil description and 013C analyis

value reached almost 8.5%¢ near the bottom (Fig. 2D).
Profiles from Piracicaba and Londrina showed similar
I3C enrichment (Fig. 1). The profile Lon-1 at Londrina
reached a AI3C value of 11.5%0 at the bottom (Fig. 2D).
In such cases the most likely cause for this large 1°C en-
richment with depth is the existence of prior C4 vegeta-
tion (Dzurec etal. 1985; Mondenesi etal. 1986;
Schwartz et al. 1987; Volkoff and Cerri 1987; Martin et
al. 1990; Desjardins et al. 1991; McPherson et al. 1993;
Wang et al. 1993; Mariotti and Peterschmitt 1994; Victo-
ria et al. 1995). Both profiles of Salitre, Nhecolandia,
and Tunas had intermediate A3C values varying approx-
imately from 4.0 to 6.0%0 (Fig. 2C). The Nhecolandia
profile came from the Brazilian Pantanal, a large flood-
plain, highly dynamic in terms of geomorphology (Ada-
moli 1982), with a landscape that alternates.high land
forested areas with low land areas of savannah. This dy-
namism is reflected in the A!3C wvalues, with reach a
maximum of almost 6% at 100 cm depth, suggesting the
replacement of the forest by a C4 savannah, and a de-
crease to almost 0.5%¢ at 170 cm depth, indicating the
dominance of a C3 vegetation type again (Victoria et al.
1995). The profiles from Tunas and Salitre (Sal-1 and
Sal-2) show A3C increasing from 4.0 to 6.0%e, within
the upper 30 cm. Below, AC values were constant to
the bottom of the profiles. According to Pessenda et al.
(1995) the cause of the increse of AIPC with depth at
these sites is fractionation of isotopes during decomposi-
tion and not a past vegetation change. However, palyno-
logical evidence of a past vegetation change in favor of
grasses that may have been C4 (Ledru 1993), and the
ABC value of 4.0-6.0%0, suggest that paleovegetation
change cannot be ruled out as an explanation.

Table 2 summarizes the radiocarbon ages of soil pro-
files for those where such data were available. The 4C
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Fig. 2 Variation of A13C values in relation to soil depth: A, B sites
with smallest A13C values; C sites with intermediate A3C values,
and D sites with highest AI3C values. Site abbreviations are given
in Table 1

ages reported represent the average “age” of a carbon at-
om in SOM, and certainly represent a mixture of both
older and younger material. For samples from deep in
the soil, the radiocarbon age may be taken as a minimum
age for stabilized organic matter. For instance, although
the ¥C age of organic matter at 100 cm depth in Para-
cominas soils is about 14,000 years BP, it was estimated
by Trumbore et al. (1995) that this average age repre-
sents a mixture of 10% modern carbon with 90% radio-
carbon-free carbon (i.e., 90% with average age >40,000
years BP).

One the most widely accepted climatic changes 1n the
pat is the drought that occurred in the middle Holocene
(Servant et al. 1993). Pollen records from Salitre (Ledru
1993) and Southern Serra dos Carajas, near Altamira
(Absy et al. 1991) show sharp increase in grass species.
The Piracicaba, Londrina and Terra Nova profiles clearly
show a sharp increase in APPC (Fig. 2C). The deepest
dated depths (170-180 cm) in the Piracicaba and Lond-

rina profiles reach ages of ca. 3600 years BP and ca.
9300 years BP. These soils were presumably subjected to
paleoclimatic and paleovegetation changes associated
with the mid-Holocene. In Salitre the deepest dated
depth (190-200 cm) is almost 7000 years BP, which
means that these profiles also experienced the middle
Holocene drought. However, the increase of APC with
depth was not as sharp as in the Piracicaba and Londrina
profiles, making it difficult to establish the cause for this
increase. No other profiles showed the effects of the mid-

~ dle Holocene dryness in their carbon isotopic composi-
tion. In addition, seven other profiles collected in several

areas of the Amazon region down to 4 m depth show no
significant variation in carbon stable isotopic composi-
tion (Sanaiotti, unpublished work). As modern savannah
soils clearly show the presence of C4 grasses in their
SOM (Dzurec etal. 1985; Mondenesi etal. 1982;
Schwartz et al. 1987: Volkoff and Cerri 1987; Martin et
al. 1990; Desjardins et al. 1991; McPherson et al. 1993;
Wang et al. 1993; Mariotti and Peterschmitt 1994), the
apparent absence of C4 signal in majority of the profiles
1S intriguing.

There are several hypothesis that can explain the lack
of a C4 signal.
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Table 2 Radicarbon ages (years BP) of soil organic matter along some soil profiles

Depth (cm) Altamira? ParagominasP Nhecolandiac Salitred Piracicaba? Londrina®
Alt-2 Par-1 Sal-2 Pir-2 Lon-2

-
0-10 modern modern modern 240 modern modern
20-30 2400
3040 modern
40-50 1440 4850 1230 820
T0-80 2790 639 2680 1920

- 90-100 3640 14190 3700 3030 2390
110-120 1483
120130 4800 3260 5450
150-160 5550
160-170 2002
170-180 4390 3640 934()
190200 6940 |
290-300 224770

a Valencia (1993); ® Trumbore et al. (1995); < Victoria et al. (1995); 4 Boulet et al. (1995)

1. The lack of signal would be consistent with domi-
nance by C3 rather than C4 grasses. The same hypothe-
sis was raised by Guillet et al. (1988), who found a simi-
lar situation in the tropical region of Colombia. However,
judging by the modern savannahs of the world, this 1s
unlikely.

2. The retreat of forest areas was not on a regional scale,
but was a much more localized phenomenom.

3. The C4 plants were not present long enough to leave
their isotopic imprint on stabilized soil organic matter.

The refuge theory for the high degree of biodiversity
in tropical Sough America suggests that the high diversi-
ty resulted from differential species evolution in forest
patches that were isolated when forests were replaced
with grassy savannahs during the Pleistocene and Holoc-
ene, and remained isolated until a new climatic change
provoked the return of an intact continuous forest (Haffer
1969 Vanzolini 1970; Prance 1973, 1982; Brown 1974).
I the findings of this study are confirmed in further anal-
ysis, it would be a strong indication that extensive arcas
of grass never existed in the Amazon, especially duning
the Holocene. In view of refuge theory this would have
strong implications for interpretations of species evolu-
tion of the Amazon rain forest.
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