The last mangroves of Marajó Island – Eastern Amazon: Impact of climate and/or relative sea-level changes

Marlon C. França a,c,k, Mariah I. Francisquinid, Marcelo C.L. Cohen a,b, Luiz C.R. Pessenda d, Dilce F. Rossetti e, José T.F. Guimarães a, Clarisse B. Smith a

a Coastal Dynamics Laboratory, Post-Graduate Program in Geology and Geochemistry, Federal University of Pará, Av. Perimenteral 2651, Terra Firma, CEP: 66077-530, Belém (PA), Brazil
b Faculty of Oceanography, Federal University of Pará, Rua Augusto Corrêa, n 1, Guamá, CEP: 66075-110, Belém (PA), Brazil
c National Space Research Institute (INPE), Rua dos Astronautas 1758-CP 515, CEP: 12245-970, São José dos Campos (SP), Brazil
d Center for Nuclear Energy in Agriculture (CENA), University of São Paulo, 13400-000, Piracicaba (SP), Brazil
e Federal Institute of Pará, Av. Almirante Barroso, 1155, Marco, CEP: 66090-020, Belém (PA), Brazil

Abstract

The dynamics, over the last 7500 years, of a mangrove at Marajó Island in northern Brazil were studied by pollen and sedimentary facies analyses using sediment cores. This island, located at the mouth of the Amazon River, is influenced by riverine inflow combined with tidal fluctuations of the equatorial Atlantic Ocean. Herbaceous vegetation intermingled with rainforest dominates the central area of the island, while várzea is the main vegetation type along the littoral. In particular, the modern northeastern coastal zone is covered by a mosaic of dense rainforest, herbaceous vegetation, mangroves, várzea, and restinga. The integration of pollen data and facies descriptions indicates a tidal mud flat colonized by mangroves in the interior of Marajó Island between ~7500 cal yr BP and ~3200 cal yr BP. During the late Holocene, mangroves retracted to a small area (100–700 m in width) along the northeastern coastal plain. Mangrove expansion during the early and mid Holocene was likely caused by the post-glacial sea-level rise which, combined with tectonic subsidence, led to a rise in tidal water salinity. Salinity must have further increased due to low river discharge resulting from increased aridity during the early and mid Holocene. The shrinking of the area covered by mangrove vegetation during the late Holocene was likely caused by the increase in river discharge during the late Holocene, which has maintained relatively low tidal water salinity in Marajó Island. Tidal water salinity is relatively higher in the northeastern part of the island than in others, due to the southeast–northwest trending current along the littoral. The mixing of marine and riverine freshwater inflows has provided a refuge for mangroves in this area. The increase in flow energy during the last century is related to landward sand migration, which explains the current retraction of mangroves. These changes may indicate an increased exposure to tidal influence driven by the relative sea-level rise, either associated with global fluctuations or tectonic subsidence, and/or by an increase in river water discharge.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mangroves are highly susceptible to climatic changes and sea-level oscillations (e.g., Fromard et al., 2004; Versteegh et al., 2004; Alongi, 2008; Berger et al., 2008; Cohen et al., 2012). They have been almost continuously exposed to disturbance as a result of fluctuations in sea-level over the last 11,000 years (Gornitz, 1991; Blasco et al., 1996; Sun and Li, 1999; Behling et al., 2001; Lamb et al., 2006; Alongi, 2008; Berger et al., 2008; Cohen et al., 2008; Gilman et al., 2008). During the Holocene, the post-glacial sea-level rise and changes in river water discharge have been considered the main driving forces behind the expansion/contraction of mangroves in northern Brazil (Cohen et al., 2008; Lara and Cohen, 2009; Guimarães et al., 2010; Smith et al., 2012). However, important changes in coastal morphology have been recorded in this region as a result of tectonic reactivations, which could have modified the relative sea-level (RLS), with a potential impact on mangrove distribution (Rossetti et al., 2007; Miranda et al., 2009; Rossetti et al., 2012).

An empirical model based on an ecohydrological approach, which allows the integration of hydrographical, topographical and physico-chemical information with vegetation characteristics of mangroves and marshes, indicates that changes in pore water salinity affect vegetation boundaries (Cohen and Lara, 2003; Lara and Cohen, 2006). In addition to studies in northern Brazil, the relationship between mangrove distribution and sediment geochemistry has been widely studied in other coastal regions (Hesse, 1961; Baltzer, 1970; Walsh, 1974; Baltzer, 1975; Snedaker, 1982; Lacerda et al., 1995; McKee, 1995;
Generally, mangroves are distributed parallel to the coast with some species dominating areas more exposed to the sea, and others occurring landward at higher elevations (Snedaker, 1982). This zonation is a response of mangrove species mainly to tidal inundation frequency, nutrient availability, and porewater salinity in the intertidal zone (Hutchings and Saenger, 1987).

Mangroves of the littoral of northern Brazil follow well-known patterns (Behling et al., 2001; Cohen et al., 2005a), where salinity results in the exclusion of freshwater species (Snedaker, 1978) and leads to characteristic patterns of species zonation and predictable types of community structure (Menezes et al., 2003). Mangroves are more tolerant to soil salinity than is várzea forest (Gonçalves-Alvim et al., 2001) and sediment salinity is mostly controlled by flooding frequency (Cohen and Lara, 2003) and estuarine gradients (Lara and Cohen, 2006).

Changes in mangrove distribution may also reflect changes in variables that control coastal geomorphology (e.g., Blasco et al., 1996; Fromard et al., 2004; Lara and Cohen, 2009). The development of mangroves is regulated by continent–ocean interactions and their expansion is determined by the topography relative to sea-level (Gornitz 1991; Cohen and Lara, 2003) and flow energy (Chapman 1976; Woodroffe et al., 1989), where mangroves preferentially occupy mud surfaces. Thus, a relative rise in sea-level may result in mangroves migrating inland due to changes in flow energy and tidal inundation frequency. Similarly, vegetation on elevated mudflats is subject to boundary adjustments, since mangroves can migrate to higher locations and invade these areas (Cohen and Lara, 2003).

The potential of each variable to influence mangrove establishment will depend on the environmental characteristics of the given littoral. Climate and hydrology are the main factors controlling the modern distribution of geobotanical units along the coast of the Amazon (Cohen et al., 2008, 2009). According to these authors, mangroves and saltmarshes dominate the marine-influenced littoral when tidal water salinity lies between 30 and 7‰ to the southeastern coastline, and várzea and herbaceous vegetation dominate freshwater-influenced coasts with tidal water salinity below 7‰ in the northwest. The littoral of Marajó Island, at the mouth of the Amazon River, is part of the fluvial sector (Fig. 1a) (Cohen et al., 2008; Smith et al., 2011, 2012).

The mangroves of Marajó Island are currently restricted to a relatively narrow section of the northeastern part of the island (Cohen et al., 2008; Smith et al., 2012). This mangrove has developed continuously since at least 2700 cal yr BP (Behling et al., 2004). According to pollen records from hinterland (Lake Arari), the area covered by mangrove vegetation was wider between ~7250 and ~2300 cal yr BP (Smith et al., 2011).

The purpose of this work was to study the environmental history of the northeastern part of Marajó Island, and discuss the processes that caused the contraction of the mangrove during the Holocene. We focus on vegetation development, the location of boundaries between mangrove and dry herbaceous vegetation, and areas where changes in sensitive vegetation related to RSL and tidal water salinities can be expected. This approach is based on the integration of pollen and facies analyses of five sediment cores, collected at distinct locations presently covered by mangrove, várzea and herbaceous vegetation.

2. Study area

The study site is located on the island of Marajó in northern Brazil, which covers approximately 39,000 km² (Cohen et al., 2008). The island is located at the mouth of the Amazon River (Fig. 1). Sediment cores were taken on the coastal plain of the town of Soure and from a lake surrounded by a herbaceous plain, and cores were denominated R-1, R-2, R-3, R-4 and R-5 (Table 1).

The study area covers the central-eastern part of the coastal plain. Its topographical range is less than 5 m and it extends inland to the maximum of the intertidal zone, which borders the coastal plateau (França and Sousa Filho, 2006).

2.1. Geological and geomorphological setting

The coastal plain of Soure is located on the Pará platform of northern Brazil. It pertains to a large area of crystalline and Palaeozoic sedimentary basement that remained tectonically stable relative to adjacent Cretaceous and Cenozoic sedimentary basins (Rossetti et al., 2008). The coastal plateau of northern Brazil is formed by the Barreiras Formation. These deposits occur from northern to southeastern Brazil and are of Miocene age (Arai, 1997).

Except for a narrow belt where the Barreiras Formation occurs, the eastern portion of the island is characterized by lowlands with altitudes averaging 4–6 m above the modern sea-level (Rossetti et al., 2007, 2008) and is dominated by Holocene sedimentation (Behling et al., 2004), which is topographically slightly lower than the western side (Behling et al., 2004; Rossetti et al., 2007; Lara and Cohen, 2009). Along the eastern portion, the Barreiras Formation is represented by sandstones and mudstones followed by post-Barreiras deposits (Rossetti et al., 2008).

Marajó Island has a river system consisting of numerous small, straight and meandering channels and ponds that are either permanent or ephemeral (Bemerugy, 1981). The flat surface of the eastern part of the island has been deeply incised by a drainage system during the Pleistocene and Holocene.

2.2. Present climate and vegetation

The region is characterized by a warm and humid tropical climate with annual precipitation averaging 2300 mm (Lima et al., 2005). The rainy season extends between December and May, with average temperatures ranging between 25 and 29 °C. The region is dominated by a regime of meso- and macrotides (tidal range of 2 to 4 m and 4 to 6 m, respectively) with variation during the spring tide between 3.6 and 4.7 m (DHN, 2003).

In contrast to most regions of Amazonia, where dense forest dominates, northeastern Marajó Island is covered with open vegetation. Restinga vegetation is represented by shrubs and herbs (e.g., Anacardium, Byrsonima, Annona, Acacia) that occur on sand plains and dunes near the shoreline. Mangrove is represented by Rhizophora and Avicennia (tree heights reaching ~20 m). The herbaceous plain consists of naturally open areas dominated by Cyparissaceae and Poaceae that widely colonize the eastern side of Marajó Island. Várzea (swamp seasonally and permanently inundated by freshwater, featuring wetland trees such as Euterpe oleracea and Hevea guianensis) and Amazon coastal forest (ACF) (composed of terrestrial trees such as Cedrela odorata, Hymenaea courbaril and Manilkara huberi) occur on the western side (Cohen et al., 2008). Narrow and elongated belts of dense ombrophilous forest are also present along riverbanks (Rossetti et al., 2008). Detailed information on the most characteristic taxa of each vegetation unit is found in Smith et al. (2011).

3. Materials and methods

3.1. Field work and sample processing

LANDSAT images acquired in 2010 were obtained from INPE (National Space Research Institute, Brazil). A three-color band composition (RGB 543) image was created and processed using the SPRING 3.6.03 system to discriminate geobotanical units (Cohen and Lara, 2003). Aerial photography, visual observation, photographic documentation, and GPS measurements were used to determine typical plant species and characterize the main vegetation units.
Fig. 1. Location of the study area: a) sea water salinity, Amazon River plume and North Brazil Current (Santos et al., 2008), b) Marajó Island; c) source coastal plain; d) vegetation units; e) sampling site on Soure coastal plain; f) mangrove and sand plain; g) degraded mangrove.
Table 1

Study site, vegetation types, sampling method and geographic coordinates in the coastal plain of Soure–eastern Marajó Island.

<table>
<thead>
<tr>
<th>Code site</th>
<th>Unit vegetation and main taxa</th>
<th>Sampling method</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>Mangrove/varzea transition — characterized by Rhizophora mangle and others taxa: Arecaceae (Euterpe oleracea), Mauritia flexuosa; Arecaceae (Montichardia arborescens), Aitzinaeae (Seuavum), Acanthacaeae (Anacroma germinans); Cyperacea; Heliconiaceae; Musaceae; Myrtaceaee (Psidium guajava); Poaceae (Olyra); Pteridacea (Actrostichum aureum), Euphorbiaceae, Salicinaeae</td>
<td>Russian sampler</td>
<td>5°00′40″/W 48°29′</td>
</tr>
<tr>
<td>R-2</td>
<td>Mangrove – characterized by Rhizophora mangle.</td>
<td>Russian sampler</td>
<td>048°39′/W 48°29′</td>
</tr>
<tr>
<td>R-3</td>
<td>Herbaceous and restiga vegetation – characterized by Arecaceae (Euterpe oleracea); Mauritia flexuosa); Birzonimia; Cyperacea; Poaceae (Olyra); Malpighiaceae.</td>
<td>Vibracorer</td>
<td>048°39′</td>
</tr>
<tr>
<td>R-4</td>
<td>Mangrove – characterized by Rhizophora mangle.</td>
<td>Vibracorer</td>
<td>048°39′</td>
</tr>
<tr>
<td>R-5</td>
<td>Herbaceous flat – characterized by Convovulaceae; Rubiaceae; Cyperacea and Poaceae.</td>
<td>Vibracorer</td>
<td>048°39′</td>
</tr>
</tbody>
</table>

Three sediment cores (R-1, R-2 and R-3) were collected during the summer season (Nov. 2008), using a Russian sampler (Cohen, 2003), and two other cores were taken with a vibracorer using aluminum tubes (R-4 and R-5). Cores were taken from an area occupied by different vegetation units: mangroves (R4 and R2), várzea (R-1), mangrove and herbaceous vegetation (R-3), and a lacustrine herbaceous plain (R-5) (Table 1).

The cores were submitted to X-ray to identify sedimentary structures. Samples were collected for grain size analysis at the Chemical Oceanography Laboratory of the Federal University of Pará (UFPA). This analysis made use of a laser particle size analyzer (SHIMADZU SALD 2101), and graphics were obtained using the Sysgran Program (Camargo, 1999). Grain size distribution followed Wentworth (1922), with separation of sand (2–0.0625 mm), silt (62.5–3.9 mm) and clay (3.9–0.12 μm) fractions. Facies analysis included descriptions of color (Munsell Color, 2009), lithology, texture and structure (Harper 1984; Walker, 1992). The sedimentary facies were classified according to Miall (1978).

3.2. Pollen and spore analyses

For pollen analysis, 1 cm³ samples were taken at 2.5 cm intervals along sediment cores R-1, R-2 and R-3 (each 150 cm deep). From sediment cores R-4 and R-5, 24 and 36 samples were collected, respectively. Prior to processing, one tablet of exotic Lycopodium spores was added to each sediment sample to allow the calculation of pollen concentration (grains cm⁻³) and pollen influx rates (grains cm⁻² yr⁻¹). All samples were prepared using standard analytical techniques for pollen including acetylation (Faegri and Iversen, 1989). Sample residues were placed in Eppendorf microtubes and kept in a glycerol gelatin medium. Reference morphological descriptions (Roubik and Moreno, 1991; Behling, 1993; Herrera and Urrego, 1996) were consulted for identification of pollen grains and spores. A minimum of 300 pollen grains were counted in each sample. The pollen sum excludes fern spores, algae and micro-foraminifera. Pollen and spore data are presented in diagrams as percentage of the pollen sum. Taxa were grouped into mangrove, herbaceous plain elements, restinga, palms, and Amazon coastal forest. Software packages Tilia and TiliaGRAF were used to calculate and plot pollen diagrams. The pollen diagrams were statistically subdivided into zones of pollen and spore assemblages using a square-root transformation of the percentage data, followed by stratigraphically constrained cluster analysis (Grimm, 1987).

3.3. Radiocarbon dating

Based on stratigraphic discontinuities suggesting changes in the tidal inundation regime, fourteen bulk samples (10 g each) were selected. In order to avoid natural contamination (e.g. Goh, 2006), the sediment samples were checked and physically cleaned under the microscope. The organic matter was submitted to chemical treatment to remove any younger organic fractions (fulvic and/or humic acids) and carbonates. This treatment consisted of extracting residual material with 2% HCl at 60 °C during 4 h, washing with distilled water until neutral pH, followed by drying at 50 °C. A detailed description of the chemical treatment for sediment samples can be found in Pessenda and Camargo (1991) and Pessenda et al. (1996). A chronological framework for the sedimentary sequence was provided by conventional and accelerator mass spectrometer (AMS) radiocarbon dating. Samples were analyzed at the University of Georgia's Center for Applied Isotope Studies (UGAMS). Radiocarbon ages are reported as ¹⁴C yr (1σ) BP normalized to a δ¹³C of −25‰. VPDB and calibrated years cal yr (2σ) BP using CALIB 6.0 (Stuiver et al., 1998; Reimer et al., 2004, 2009). In the text we use the median of the range for our and other authors' data.

4. Results

4.1. Radiocarbon dates and sedimentation rates

Radiocarbon dates for cores R-1 to R-5 are shown in Table 2. Sedimentation rates are between 0.1 and 10 mm yr⁻¹ (Figs. 2 and 3). Although the rates are nonlinear between the dated points, they are within the vertical accretion range of 0.1 to 10 mm yr⁻¹ of mangrove forests as reported by other authors (e.g. Bird, 1980; Spenceley, 1982 and Caboon and Lynch, 1997; Behling et al., 2004; Cohen et al., 2005a, 2008, 2009; Vedel et al.; Guimarães et al., 2010).

Table 2

<table>
<thead>
<tr>
<th>Code site</th>
<th>Laboratory number</th>
<th>Depth (cm)</th>
<th>Radiocarbon ages (yr BP)</th>
<th>CALIB age – 2σ (cal yr BP)</th>
<th>Median of age range (cal yr BP)</th>
<th>δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>UGAMS4924</td>
<td>147–150</td>
<td>540 ± 25</td>
<td>560–520</td>
<td>540</td>
<td>−27.8</td>
</tr>
<tr>
<td>R-2</td>
<td>UGAMS4925</td>
<td>147–150</td>
<td>1260±30</td>
<td>1160–1120</td>
<td>1140</td>
<td>−28.2</td>
</tr>
<tr>
<td>R-3</td>
<td>UGAMS4927</td>
<td>107–110</td>
<td>40 ± 25</td>
<td>70–30</td>
<td>50</td>
<td>−28.5</td>
</tr>
<tr>
<td>R-3</td>
<td>UGAMS4926</td>
<td>147–150</td>
<td>690 ± 25</td>
<td>680–640</td>
<td>660</td>
<td>−28.6</td>
</tr>
<tr>
<td>R-4</td>
<td>UGAMS4932</td>
<td>2–4</td>
<td>Modern</td>
<td>–</td>
<td>–</td>
<td>−29.3</td>
</tr>
<tr>
<td>R-4</td>
<td>UGAMS4931</td>
<td>44–46</td>
<td>Modern</td>
<td>–</td>
<td>–</td>
<td>−27.7</td>
</tr>
<tr>
<td>R-4</td>
<td>UGAMS4932</td>
<td>65–69</td>
<td>620 ± 25</td>
<td>620–560</td>
<td>590</td>
<td>−27.5</td>
</tr>
<tr>
<td>R-4</td>
<td>UGAMS4932</td>
<td>192–192</td>
<td>1530 ± 30</td>
<td>1520–1460</td>
<td>1490</td>
<td>−26.1</td>
</tr>
<tr>
<td>R-4</td>
<td>UGAMS4932</td>
<td>209–211</td>
<td>1510 ± 25</td>
<td>1420–1340</td>
<td>1380</td>
<td>−26.4</td>
</tr>
<tr>
<td>R-4</td>
<td>UGAMS4933</td>
<td>218–220</td>
<td>1760 ± 30</td>
<td>1740–1570</td>
<td>1655</td>
<td>−26.6</td>
</tr>
<tr>
<td>R-5</td>
<td>UGAMS4928</td>
<td>22–24</td>
<td>1920 ± 30</td>
<td>1950–1820</td>
<td>1885</td>
<td>−25.3</td>
</tr>
<tr>
<td>R-5</td>
<td>UGAMS4928</td>
<td>78–83</td>
<td>5730 ± 30</td>
<td>6640–6580</td>
<td>6610</td>
<td>−30.2</td>
</tr>
<tr>
<td>R-5</td>
<td>UGAMS4929</td>
<td>142–146</td>
<td>5840 ± 30</td>
<td>6740–6600</td>
<td>6670</td>
<td>−27.0</td>
</tr>
<tr>
<td>R-5</td>
<td>UGAMS4929</td>
<td>158–160</td>
<td>6750 ± 30</td>
<td>7670–7580</td>
<td>7625</td>
<td>−26.5</td>
</tr>
<tr>
<td>R-5</td>
<td>UGAMS4932</td>
<td>185–194</td>
<td>6150 ± 30</td>
<td>7160–6990</td>
<td>7060</td>
<td>−29.1</td>
</tr>
<tr>
<td>R-5</td>
<td>UGAMS4932</td>
<td>234–240</td>
<td>5860 ± 30</td>
<td>6780–6770</td>
<td>6775</td>
<td>−29.3</td>
</tr>
<tr>
<td>R-5</td>
<td>UGAMS4930</td>
<td>248–251</td>
<td>6600 ± 30</td>
<td>7530–7440</td>
<td>7485</td>
<td>−27.1</td>
</tr>
</tbody>
</table>
Fig. 2. Sediment profile with sedimentary features and ecological groups from cores R-1, R-2 and R-3.
Fig. 3. Sediment profile with sedimentary feature and ecological groups from cores R-4 and R-5.
4.2. Facies description and pollen association

The cores present dark gray and light brown muddy and sandy silt with an upward increase in grain size. These deposits are massive, parallel laminated or heterolithic-bedded. The texture and description of sedimentary structures allowed the identification of eleven sedimentary facies (Table 3).

A cluster analysis of pollen assemblages allowed the definition of pollen zones for each sediment core. The pollen diagrams show pollen types (Figs. 4, 5, 6, 7 and 8) and the proportions represented by the different ecological groups (Figs. 2 and 3). Pollen concentration and pollen influx values range from 5000 to 100,000 grains cm$^{-3}$ and from 100 to 8000 grains cm$^{-2}$ yr$^{-1}$, respectively.

The sediment and pollen analyses allowed the identification of five facies associations, described below.

4.3. Mangrove/herbaceous flat facies association

The mangrove/herbaceous flat occurs along the interval 150–135, 150–95 and 15–0 cm in R-1, R-2 and R-3, respectively (Fig. 2). This unit consists mostly of massive mud (facies Mm) with plant debris, and bioturbated coarse- to fine-grained sand (facies Sb).

The pollen assemblages of this association correspond to zone R1#1 (Fig. 4), R2#1 (Fig. 5) and R3#2 (Fig. 6). Zone R1#1 (560–520 cal yr BP until ~480 cal yr BP) is characterized by pollen of Rhizophora (15–65%), Cyperaceae (5–40%), Poaceae (2–30%), Fabaceae (2–20%), Mimosaceae (2–10%), Borrichia (~5%), Rubiaceae (5–15%) and Amaranthaceae (2–7%). Zone R2#1 (1160–1120 cal yr BP until ~700 cal yr BP) is characterized by pollen of Rhizophora (10–75%), Cyperaceae (10–70%), Poaceae (5–20%), Fabaceae (2–10%) and Rubiaceae (1–5%). The presence of pollen from the Amazon coastal forest can be observed in this zone, represented by Euphorbiaceae (5–20%). Zone R3#2 (1993 AD until present) is characterized mainly by a decrease in Rhizophora (35–80%) and increase in Poaceae (10–25%) and Cyperaceae (5–15%) pollen.

4.4. Mangrove flat facies association

Cores R-1 and R-2 show the mangrove tidal flat along the intervals 135–0 and 95–0 cm, while this association occurs at depth interval 150–15 cm in R-3, 40–0 cm in R-4, and between 255 and 15 cm in R-5 (Figs. 2 and 3). The deposit consists of mud with flat lenses of rippled sand (facies I). Bioturbated mud (facies Mbi), bioturbated sand (facies Sb), massive sand (Sm) and cross laminated fine-grained sand (facies Sc) are also present in this association. In addition, core R-1 displays mud with convolute lamination, which may contain roots, root channels and dwelling structures produced by benthic fauna.

The pollen assemblages of this association correspond to zone R1#2 (~480 cal yr BP – modern, Fig. 4), zone R2#2 (~700 cal yr BP – modern, Fig. 5) and to zone R3#1 (~660 cal yr BP – ~1993 AD, Fig. 6) in its entirety. This association also occurs in zone R4#3 (~600 cal yr BP – modern, Fig. 7), and zone R5#1 (~7500 cal yr BP – ~3200 cal yr BP, Fig. 8) and is characterized by the predominance of mangrove pollen, mainly represented by Rhizophora (40–95%). Pollen of herbaceous plain vegetation of the Cyperaceae, Poaceae, Fabaceae, Mimosaceae, Borrichia, Rubiaceae, Amaranthaceae and Asteraceae occur at very low percentages (<30%).

4.5. Lagoonal facies association

This association is mainly represented by massive mud (facies Mm) and massive sand (facies Sm), with mangrove pollen along zone R4#2 (70–40 cm). These deposits contain root and root marks, benthic tubes, mud and very fine silt to medium sand. The presence of mangrove is marked by Rhizophora (65–90%) and Avicennia (5%) pollen.

4.6. Foreshore facies association

This association occurs in core R-4 (225–70 cm), about 1650 to 580 cal yr BP, corresponding to zone R4#1. It consists of parallel-laminated, fine- to medium-grained sand (facies Sp). Roots, root marks

Table 3

<table>
<thead>
<tr>
<th>Facies</th>
<th>Description</th>
<th>Sedimentary process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioturbated mud (Mb)</td>
<td>Browish black and brown mud with many roots and root marks, dwelling structure and diffuse fine sand following the root traces and benthic tubes.</td>
<td>Diffused mixture of sediments and alternating colors by intense bioturbation and diagenic process.</td>
</tr>
<tr>
<td>Lenticular heterolithic (Hl)</td>
<td>Dark brown mud with single and connected flat lenses of bright brown, rippled fine to very fine sand.</td>
<td>Low energy flows with mud deposition from suspension, but with periodic sand inflows through migration of isolated ripples.</td>
</tr>
<tr>
<td>Cross laminated sand (Sc)</td>
<td>Brownish gray, well sorted, fine to medium sand with current ripple cross-lamination.</td>
<td>Migration of small ripples formed during low energy, either unidirectional or combined (unidirectional and oscillatory) flows.</td>
</tr>
<tr>
<td>Bioturbated sand (Sb)</td>
<td>Pale olive silt to medium sand with light gray mottles, many roots, roots traces in growth position and dwelling structures.</td>
<td>Sediment homogenization and morting by biological activity and diagenic process, respectively.</td>
</tr>
<tr>
<td>Parallel laminated mud (Mm)</td>
<td>Plastic, gray to black mud with parallel laminations and fine sand with thin, continuous streaks of gray to olive, silt to very fine grained sand.</td>
<td>Deposition of mud from suspension under very low flow energy.</td>
</tr>
<tr>
<td>Massive sand (Sm)</td>
<td>Plastic, massive mud, gray to dark gray and green, with many roots and root marks</td>
<td>The absence of structures in muddy indicates low flow energy during the sediment accumulation.</td>
</tr>
<tr>
<td>Mud/sand grains (Mms)</td>
<td>Gray and greenish gray, mud deposits with fine grained sand.</td>
<td>The absence of structures suggests the transported material by traction during the sediment deposition. This structure and the relative grain size increase may be produced by suspension or sedimentary dispersion through pulse of adjacent environmental and flow energy (tidal).</td>
</tr>
<tr>
<td>Massive sand (Sm)</td>
<td>Light yellow, moderately sorted, fine-grained massive sand. Mud intraclasts are either disperse or locally form conglomeratic lags.</td>
<td>The massive nature of these deposits might have been produced during drilling. Therefore, the most likely is that these deposits were, at least in great part stratified.</td>
</tr>
<tr>
<td>Parallel-laminated sand (Sp)</td>
<td>Fine-to-medium grained sand with parallel lamination or stratification. Local association with mud drapes.</td>
<td>High (upper plane bed) energy flows. Parallel laminated sands with mud interbedding are related to low energy flows, before the stage of ripple development.</td>
</tr>
<tr>
<td>Heterolithic deposits wavy (Hw)</td>
<td>Greenish gray, mud layers interbedded with fine-to-medium-grained sand forming wavy structures.</td>
<td>Periods of mud and sand deposition from suspension and bed-load transport, respectively.</td>
</tr>
<tr>
<td>Flaser heterolithic deposit (Hf)</td>
<td>Gray mud layers interbedded with fine-to-medium-grained sand forming flaser structures.</td>
<td>Fluctuating low and relatively higher flow energies, with a balance between mud deposition from suspensions and sand deposition either from suspension or migrating ripples.</td>
</tr>
</tbody>
</table>
Fig. 4. Pollen record from core R-1 with percentages of the most frequent pollen taxa and sample age.
Fig. 5. Pollen record from core R-2 with percentages of the most frequent pollen taxa and sample age.
Fig. 6. Pollen record from core R-3 with percentages of the most frequent pollen taxa and sample age.
Fig. 7. Pollen record from core R-4 with percentages of the most frequent pollen taxa and sample age.
Fig. 8. Pollen record from core R-5 with percentages of the most frequent pollen taxa and sample age.
and benthic tubes are present locally. Bedding is marked by heavy minerals and/or clay films (Fig. 3). The base is characterized by very fine-to-medium-grained sand, and either heterolithic wavy deposits (facies Hw) and flaser heterolithic deposits (Hf). In addition, plant debris and oxidized iron blades are present. These deposits did not contain pollen grains.

4.7. Lake facies association

This association occurs only in core R-5 (R5#2), between 55 and 0 cm (Figs. 3 and 8). It is characterized by massive mud (facies Mm) and bioturbated mud (Mb). Benthic tubes, oxidized iron concretions, plant debris and root marks were present. These deposits are marked by greater amounts of pollen which is characteristics of ACF (3–75%), herbs (2–55%), aquatic vegetation (0–10%) and ferns (1–5%), and accompanied by a decrease in mangrove pollen (85–90%).

5. Discussion

5.1. Pollen signal and vegetation changes in Marajó Island during the Holocene (central and eastern coastal zone)

There often exists two pollen components in sediment—pollen from “local” vegetation, and background pollen from “regional” vegetation (Janssen 1966, 1973; Andersen 1967; Sugita 1994). Pollen records of lacustrine sediment cores include pollen sourced from vegetation surrounding the lake, considering that winds blow from various directions. Thus, the proportion of the pollen signal provided by each vegetation type is distance-weighted (e.g. Davis, 2000). Some empirical studies have reported pollen transport in rivers (e.g. Brush and Brush, 1972; Solomon et al., 1982). Flume experiments suggest that pollen grains will settle out into sediment when water velocity is lower than 0.3 m s⁻¹, and therefore grains can remain in suspension and be transported to long distances when water velocity is greater than 0.3 m s⁻¹ (Brush and Brush, 1972). According to Xu et al. (2012), the pollen found in lakes originates from three components: an aerial component mainly carried by wind, a fluvial catchment component transported by rivers and a third waterborne component transported by surface wash. Overall, vegetational composition within the ‘aerial catchment’ differs from that of the hydrological catchment.

Influx rates of modern pollen from the Bragança Peninsula, located 150 km east of the study area, indicate that Rhizophora is a very prolific pollen producer within mangroves, while Avicennia and Laguncularia produce lesser amounts. Pollen influx rates of Rhizophora and Avicennia in the Rhizophora/Avicennia dominated forest area are approximately 14,500 and 450 grains cm⁻² yr⁻¹, respectively. Pollen tramps in the herbaceous plain site, which are located at least 1–2 km away from the nearest Rhizophora trees and 100 m away from the nearest Avicennia, document an average of 410 Rhizophora grains cm⁻² yr⁻¹ and an average of 8 Avicennia grains cm⁻² yr⁻¹. This indicates that a certain amount of Rhizophora pollen grains can be transported by wind, while wind transport of Avicennia pollen is very low (Behling et al., 2001).

Core R-5, sampled from a lake and currently dominated by herbaceous vegetation (Fig. 1), indicates change in vegetation patterns. This change likely extends at least to the drainage basin area and is expected to be reflected in pollen records of the lacustrine sediments. Pollen contributions from different vegetation type in the surrounding landscape are also expected to decrease with increasing distance from the lake. For this reason the pollen record of core R-5, at least between depths of 0 and 55 cm, is likely more representative of vegetation dynamics of eastern Marajó Island than those records from cores R-1, R-1, R-3 and R-4, collected from tidal flats.

The results obtained from pollen and sedimentological analyses suggest vegetation changes during the last seven thousand years. The sedimentary deposits consisting of mud/sand alternations formed under oscillating flow energy contain three pollen groups. Vegetation shifts most likely occurred under the influence of fluctuating flow velocity asymmetry in tidal flats. Data suggest a tidal mud flat colonized by mangroves in the central region of the island between ~7500 cal yr BP and ~3200 cal yr BP, as recorded in core R-5 (Figs. 3 and 8), and other cores from Lake Arari on Marajó Island during the early and mid Holocene (Smith et al., 2011, 2012).

During the late Holocene in the hinterland of Marajó Island, mangroves were largely replaced by herbaceous vegetation. Mangroves occurred on tidal flats on the northeastern coast of the island (i.e., core R-2) at least since ~1150 cal yr BP, and continued to be recorded in cores R-1, R-4 and R-3 at 540, 580 and 660 cal yr BP, respectively.

The migration of mangroves recorded in core R-4 (Fig. 7) may be a natural response to coast progradation, following stabilization and mud accumulation. Progradation could have also affected other areas of the Marajó coastline, where várzea became established instead of mangrove (Cohen et al., 2008 and Smith et al., 2011).

Therefore, mangrove vegetation at the mouth of the Amazon River retreated to a narrow area of northeastern Marajo Island. An increment in river discharge near Marajó Island during the late Holocene constitutes a hypothesis for this isolation (Guimarães et al., 2012; Smith et al., 2012). This process could be responsible for the modern decrease in tidal water salinity along the litoral (0–6‰, Santos et al., 2008). It is noteworthy that tidal water salinity is greater in this northeastern area than elsewhere on the island, and this is related to the southeast–northwest trending current along the litoral. This current displaces brackish waters from the marine influenced littoral (Fig. 1a).

Greater tidal water salinity during the early and mid Holocene could be attributed to the episode of Atlantic sea-level rise recorded in other parts of South America (e.g., Sugio et al., 1985; Tomazelli, 1990; Rull et al., 1999; Hesp et al., 2007; Angulo et al., 2008). This event could have also produced a marine incursion along the Pará littoral, where the RSL stabilized at its current level between 7000 and 5000 yr BP (e.g. Cohen et al., 2005b; Vedel et al., 2006). A transgressive phase occurred on Marajó Island in the early to mid-late Holocene. Subsequently, there was a return to the more continental conditions that prevail today in the study area (Rossetti et al., 2008). This history of RSL fluctuations on Marajó Island seems to have been affected by tectonic activity during the Late Pleistocene and Holocene (Rossetti et al., 2008; Rossetti et al., 2012). Hence, transgression was favored during increased subsidence, when space was created to accommodate new sediments. Tectonic stability seems to have prevailed during the mid to late Holocene, leading to coastal progradation that culminated with more continental conditions prevailing on the island.

The post-glacial sea-level rise, likely combined with tectonic subsidence, caused a marine transgression. The tidal water salinity should have further increased due to low river discharge resulting from increased aridity during the early and mid Holocene. If river systems are considered to be integrators of rainfall over large areas (Amarasekera et al., 1997), variations in the discharge of the Amazon River during the Holocene may be a consequence of changes in rainfall rates, as recorded in many different regions of the Amazon Basin (e.g. Bush and Colinvaux, 1988; Abys et al., 1991; Sifeddine et al., 1994; Desjardins et al., 1996; Gouveia et al., 1997; Pessenda et al., 1998a, 1998b, 2001; Behling and Hooghiemstra, 2000; Freitas et al., 2001; Sifeddine et al. 2001; Weng et al., 2002; Bush et al., 2007; Guimarães et al., 2012).

5.2. Mangrove dynamics during the last decades in the eastern coastal zone of Marajó Island

Mangroves preferentially occupy mudflats. Mangrove retreat along the coastline may be caused by landward sand migration, which covers the mudflat and asphyxiates the vegetation (Cohen and Lara, 2003). During the last one hundred years, the increase inflow energy on mangroves (Furukawa and Wolsanski, 1996) evidenced at Marajó Island by the upward mud into sand (Figs. 1f and 1g) may also contribute to mangrove retraction, as recorded in the upper section of core R-3 (Fig. 6).
The disappearance of mangrove vegetation along the Marajó coastline has been mostly caused by erosion and landward sand migration above mangrove mud sediments (Fig. 1g). At present, this region is exposed to wave action and tidal currents in Marajó Bay, which apparently have caused the retreat of the coastline, and consequently a reduction in the area covered by mangrove vegetation.

This process is also evidenced along the Pará littoral. The marine influenced littoral in the central area of peninsulas also shows a transition between herbaceous vegetation and mangrove forest, with mangrove migration toward the topographically highest herbaceous areas most likely in response to the modern RSL rise (Cohen and Lara 2003; Cohen et al., 2009).

Greater exposure to tidal influence may have been driven by RSL rise and/or by greater river water discharge. As previously mentioned, the RSL rise in this area may be related to tectonics and it may reduce areas favorable for mangrove development (Blasco et al. 1996) leading to the migration of this ecosystem to topographically more elevated terrains (Cohen and Lara, 2003; Cohen et al. 2005a).

Climate fluctuations (Molodkov and Bolikhovskaya, 2002) which impacted rainfall (e.g. Aby et al. 1995; Pessenda et al., 1998a,b, 2001, 2004; Behling and Costa, 2000; Freitas, et al., 2001; Maslin and Burns, 2001) could also have caused changes in river flow and estuarine salinity gradients (Lara and Cohen, 2006). This can also affect the RSL (Mörner, 1996).

The area covered by herbaceous vegetation, located in topographically higher areas, suffered a reduction during the last decades (Cohen and Lara, 2003) and centuries (Cohen et al., 2005a). This indicates an increase in the RSL, which has caused erosion and deposition of sand over mud deposits. This trend was also observed on the Taperal (12 km north of Bragança) (Vedel et al., 2006). The effects of RSL rise were also observed in cores taken from São Caetano de Odivelas and Salinópolis (Cohen et al., 2009) in the northeastern coast of Pará, in the eastern Amazon region.

6. Conclusions

The integration of pollen data and facies descriptions of five sediment cores indicates a tidal mud flat colonized by mangroves in the interior of Marajó Island between 7500 cal yr BP and ~3200 cal yr BP. During the late Holocene, mangroves became isolated and grew on a small area (100–700 m width) of the northeastern part of the island. This likely results from lower tidal water salinity caused by a wet period that resulted in greater river discharge during the late Holocene. The northeastern area of the island exhibits relatively greater tidal water salinity, due to the southeast–northwest trending littoral current which brings brackish waters from more marine influenced areas. It has provided a refuge for the mangroves of Marajó Island.

Over the last century, the increase in flow energy evidenced by upward mud/sand transitions also contributes to mangrove retraction, as recorded in the upper part of core R-3. This is mainly due to landward sand migration, which covers the mudflat and asphyxiates the mangrove. The increase in flow energy and exposure to tidal influence may have been driven by the RSL rise, either associated with global fluctuations or tectonic subsidence, and/or by the increase in river water discharge. These processes can modify the size of the area occupied by mangroves.

As demonstrated by this work, using a combination of proxies is efficient for palaeoenvironmental reconstruction, where mangrove retraction during the late Holocene shows the high degree of sensitivity of this ecosystem to the sequence of environmental variables discussed here.

Acknowledgments

We thank the members of the Costal Dynamics Laboratory (LADIC-UFPA) and Center for Nuclear Energy in Agriculture (CENA-USP), and students from the Chemical Oceanography Laboratory for their support. This study was financed by the Foundation for Research Support of Pará (FAPESPA, 104/2008), and the Foundation for Research Support of São Paulo (FAEPESP, 03615-5/2007).

References

