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ABSTRACT. Analysis of biological proxies in lake sediment and geochemical analysis of soil profiles reveal natural vege-
tation dynamics, with climate inferences, since the late Pleistocene in a fragment of the pristine lowland Atlantic Forest of
southeastern Brazil. Carbon isotopes from soil organic matter and 14C ages from the humin fraction indicate the dominance
of C3 plants since ~17,000 cal BP. Palynological analysis of a sediment core indicates the presence of Atlantic Forest vege-
tation since 7700 cal BP. Changes in the relative abundance of tree ferns and palms suggest the predominance of a humid
period from ~7000–4000 cal BP and establishment of the modern seasonal climate at ~4000 cal BP. Data indicate mainte-
nance of the regional forest coverage since the late Pleistocene, corroborating previous suggestions that this region was a for-
est refuge during less humid periods of the late Pleistocene and Holocene. Some plant taxa with currently divided
distributions between Amazonia and the Atlantic Forest colonized the region since at least 7500 cal BP, indicating an earlier
connection between Amazonia and Atlantic Forest.

INTRODUCTION

According to the Instituto Brasileiro de Geografia e Estatística (IBGE 2004), 6 continental biomes
occur in the Brazilian territory (Figure 1). Amazon and Atlantic Forest biomes are characterized by
the dominance of forest physiognomies, mainly tropical moist broadleaf forests. Three open vege-
tation biomes separate these forest areas, Caatinga (dominated by xeric shrublands), Cerrado (trop-
ical grasslands, savannas, and shrublands), and Pantanal (flooded grasslands and savannas). In
southern Brazil, the Pampa biome mainly is comprised of subtropical grasslands.

The Atlantic Forest is one of the most diverse and endangered ecosystems of Earth, now reduced to
<10% of its original cover (Myers et al. 2000). Some explanations for its modern biodiversity pat-
terns involve historical processes related to events of forest expansion and retraction. Intervals of
less humid climates during the Pleistocene and Holocene may have caused retraction and fragmen-
tation of the Atlantic Forest, with some areas presenting more stable forest cover. The region from
southern Bahia to northern Espírito Santo is considered by some as an area of more stable forest cov-
erage during the Pleistocene (Mori and Prance 1981; Prance 1982; Grazziotin et al. 2006; Cabanne
et al. 2008). On the other hand, intervals of more humid climates may have allowed the expansion
of the forests. Some authors consider the presence of detached taxa between the Atlantic Forest and
Amazonia as evidence of ancient connections between these 2 forest biomes. These connections
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may have occurred during periods of wetter climates when these species could have crossed the
modern Caatinga and Cerrado areas (see Fiaschi and Pirani 2009 and references herein).

Paleoenvironmental studies have contributed to a better understanding of the Atlantic Forest history
during the late Quaternary, showing that it presented locally distinct responses to the climate fluctu-
ations. For the last glacial period, studies have revealed events of forest retraction, especially during
the Last Glacial Maximum (LGM), characterized by the expansion of tropical grasslands and savan-
nas in central and western regions of the Atlantic Forest, and expansion of subtropical grasslands at
its southern and southeastern areas (Behling 1997a,b, 2003; Behling and Lichte 1997; Behling et al.
2002, 2004; Gouveia et al. 2002; Pessenda et al. 2004; Saia et al. 2008; Ledru et al. 2009). Other
studies have shown the maintenance of forests or forest-grassland mosaics, with no evidence of for-
est retraction, even during the LGM (Pessenda et al. 2009).

For the early and mid-Holocene, studies based on pollen and carbon isotopes from soil organic mat-
ter (SOM) have shown the expansion of grasslands and savannas at the Atlantic Forest biome
(Behling 1997b, 2003; Behling et al. 2004; Gouveia et al. 2002; Garcia et al. 2004; Pessenda et al.
2004; Ledru et al. 2009), or the maintenance of forest-subtropical grasslands mosaics (Behling
1997a; Pessenda et al. 2009). Few studies based on palynology have demonstrated the permanence
of the Atlantic Forest during the entire Holocene (e.g. Behling and Negrelle 2001). Most of these

Figure 1 Map showing the original distribution of Amazon and Atlantic Forest biomes in
Brazil (IBGE 2004); the relative positions of Caatinga, Cerrado, and Pantanal biomes;
political map of Brazil with the identification of the states cited in the text; and the approx-
imate sites of the paleovegetation studies discussed in the text: AM = Amazonas; MA =
Maranhão; CE = Ceará; PB = Paraíba; BA = Bahia; MG = Minas Gerais; ES = Espírito
Santo; SP = São Paulo; SC = Santa Catarina.
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studies propose forest expansion or modification of forest species composition during the late
Holocene, in response to inferred more humid climates.

Here, we propose an interdisciplinary approach, using sediment palynology and carbon isotopes of
SOM, to study vegetation dynamics, in terms of changes in biodiversity patterns and their relation-
ship with climatic changes, undergone by the lowland Atlantic Forest during the late Pleistocene and
Holocene, in the Linhares region of northern Espírito Santo State. As mentioned, some studies have
suggested this region was a more stable forest area during climate oscillations of the late Quaternary.

STUDY SITE

Vale Nature Reserve (VNR) and Sooretama Nature Reserve (Sooretama) are located at the northern
coast of Espírito Santo State, Brazil (Figure 2). These reserves contain remnants of primary forest,
known locally as tabuleiro forest, as well as other types of natural vegetation such as seasonally
flooded forests, marshes, gallery forests, restingas, and campos nativos (grasslands).

Tabuleiro forest is the most representative vegetation type at VNR and Sooretama. It is a lowland
dense rainforest, placed over Yellow Dystrophic Latosol, at 20–70 m above sea level (m asl), on a
flat, smooth undulated terrain formed by Neogene sediments (Santos et al. 2004; Dominguez 2009).
Some plant taxa in tabuleiro forests present a divided geographic distribution with Amazonian for-
ests. Examples are the genera Glycydendron, Rinorea, Senefeldera, Symphonia, Borismene, and

Figure 2 The study region at the NE coast of Espírito Santo State (upper
left panel), climate diagram for the study site (upper right panel), and
sampling sites in VNR and Sooretama nature reserves (lower panel).
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Macoubea (Lista de Espécies da Flora do Brasil 2013). The campos nativos are native grasslands
interspersed among the tabuleiro forest. The soils under campos nativos at VNR were classified by
Santos et al. (2004) as Espodosol. These are poorly drained sandy soils, due to the presence of a
cemented B horizon, and thus are prone to flooding during the rainy season.

Precipitation patterns at the study site are controlled by the South American Monsoon System
(SAMS; Garreaud et al. 2009). The regional climate is strongly seasonal with the rainy season
occurring during austral summer. The mean monthly temperature is always higher than 18 C. For
the time interval from 1975 to 2002, the local climate was classified as the “Aw” type in the Köppen
system, with a mean annual precipitation of 1215 mm, mean annual temperature of 23.3 C, and a
dry season during the winter months of June to September (Figure 2).

MATERIAL AND METHODS

Carbon isotope composition (13C) of the organic matter preserved in soils can be used to study past
vegetation dynamics relating to the abundance of C3 and C4 plants (Pessenda et al. 1996, 2004,
2009). C4 plants (especially Poaceae and Cyperaceae) are more efficient in the use of water and
usually more competent than C3 plants in relatively warmer and dryer environments. The 13C of C3

plants ranges from –32‰ to –20‰, whereas the 13C of C4 plants ranges from –17‰ to –9‰, and
this isotope signature may be preserved in the soil profile. Soil samples for 13C analyses were col-
lected in 10- or 20-cm intervals at forest and grassland sites (Table 1). These samples were air-dried,
and the <250-µm fraction was used for carbon isotope analysis. Samples from dominant plant spe-
cies and litter were collected at some sites for 13C analysis. These samples were cleaned with
deionized water, dried at 40 C, and grinded. Analyses were carried out at the CENA Stable Isotope
Laboratory using an elemental analyzer attached to an ANCA SL 2020 mass spectrometer. 13C is
measured with respect to VPDB and is expressed in per mil (‰) with a standard deviation of ±0.2‰
(Pessenda et al. 2010a).

A 204-cm sediment core (MAC-C) was collected with a modified Livingston piston sediment sam-
pler (Colinvaux et al. 1999) on a floating platform at the center of Lagoa do Macuco basin (“MAC”

Table 1 Sampling sites and types of analyses.

Sitea

aSites in which were collected plants for 13C analyses: MB, MT1, NG5, MBA, NG1, MUGI, NMI, NG7, NB, and MAC.

Description Sampling method Coordinates and altitude (m asl) Analyses

MBT Forest Trench 190912.30S, 400244.88W (66) 14C
CT Forest Trench 190514.80S, 395418.50W (32) 13C
MB Forest Hand auger 190922.56S, 400232.52W (68) 13C
MT1 Forest Hand auger 191219.86S, 395738.16W (40) 13C
NG5 Forest Hand auger 191325.40S, 395815.30W (34) 13C
MBA Forest Hand auger 190634.55S, 395328.90W (30) 13C
MJ Forest Hand auger 190456.30S, 395315.30W (28) 13C
NG1 Grassland Hand auger 191240.80S, 395750.52W (24) 13C
NG1/1 Grassland Hand auger 191236.50S, 395748.10W (24) 14C, 13C
MUGI Grassland Hand auger 191229.16S, 395743.32W (27) 13C
NMI Grassland Hand auger 190911.82S, 400356.34W (56) 13C
NG7 Grassland Hand auger 191312.90S, 395809.50W (26) 13C
NB Grassland Hand auger 190636.10S, 395319.80W (14) 13C
MAC Lake Piston corer 190235.04S, 395641.70W (1) 14C, pollen
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site in Table 1). Lagoa do Macuco is a freshwater lake located within the Barra Seca River Valley
(Figure 2). Dominant plant species around the lake were collected for 13C analysis. At the 14C lab-
oratory (CENA/USP, Piracicaba), sediment subsamples were collected at 2-cm intervals of the core.

Four soil samples were selected for 14C dating, 3 from a forest site (MBT) and 1 from a grassland
site (NG1/1). The sample from the NG1/1 site was collected from an undetermined soil type below
the cemented B horizon of the Spodosol. These soil samples were treated according to Pessenda et
al. (1996) for humin extraction. Humic and fulvic acids removed during the humin extraction are
mobile and can be sources of younger carbon transported downward from the shallow part of the
soil. Therefore, humin is the most appropriate fraction for dating SOM.

Sixteen sediment samples from the MAC-C core were selected for 14C dating. Methodology and
results are presented and discussed in Buso Junior et al. (these proceedings). All the samples used in
14C analysis (soil and sediment) were combusted at the 14C Laboratory at CENA, and purified CO2

was sent to Isotrace Laboratory, University of Toronto, Canada, and to the University of Georgia,
USA, for accelerator mass spectrometry (AMS) dating. Ages are expressed as years before present
(BP) and calibrated ages (cal BP, 2s), according to the SHCal04 curve (McCormac et al. 2004) for
ages from 0–11,000 cal BP, and the IntCal09 curve (Reimer et al. 2009) for ages >11,000 cal BP. The
software CALIB v 6.11 (Stuiver and Reimer 1993) was used for calibrating 14C ages. Calibrated
ages of sediment samples were used to create an age model in the software Tilia v 1.7.16 (Grimm
1992) to interpolate ages at any undated interval in the sediment core.

Pollen analysis was carried out on 26 samples of 1 cm3, processed according to Colinvaux et al.
(1999). At least 300 tree/shrub pollen grains were counted in each sample. The total pollen sum
includes all pollen types and is the basis for percentage calculations. Fern spores are not included in
the total pollen sum. Identification was based on the pollen reference collection of the 14C Labora-
tory of CENA. Identified pollen and spores were grouped into mangrove trees, other trees, and
shrubs, aquatics, terrestrial fern spores, and herbs. Unidentified and reworked pollen grains were
classified as indeterminate. In order to identify changes in forest taxa composition, CONISS soft-
ware (Grimm 1987) was used for constrained cluster analysis, which was based on trees and shrubs
pollen (excluding mangrove trees) and Cyatheaceae spore counts, which are representative of forest
environments.

RESULTS AND DISCUSSION

Chronology

The 14C ages obtained from the humin fraction varied from 16,685–15,461 cal BP at 360–350 cm in
the grassland site, to 7827–7669 cal BP at 200–190 cm, and 2844–2744 cal BP at 50–40 cm, in the
forest site (Table 2). The 14C ages obtained from the humin fraction, at forest and grassland sites, are
in agreement with several naturally buried humin and charcoal samples from Anhembi, Botucatu,
Jaguariúna, Piracicaba (São Paulo State), Salitre (Minas Gerais State), Barreirinhas (Maranhão
State), FLONA (Ceará State), REBIO (Paraíba State), and Humaitá (Amazonas State) (Figures 1
and 3). Based on this, we suggest that the regression curve of Figure 3 can be used to infer an
approximate age for deeper samples (350–400 cm) in this study. These samples can represent the
late Pleistocene (~17,000 cal BP).

In the MAC-C core, 14C ages range from 7667–7430 cal BP at the base to modern age at the top
(Figure 5). No age inversions were observed. The ages from the MAC-C core, and the age model,
are presented and discussed in more detail Buso Junior et al. (these proceedings).
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d13C Values of Modern Plants and Litter

At forest sites, 13C values of dominant plant varied from –35.8‰ to –31.2‰ and litter varied from
–30.6‰ to –28.9‰. At grassland sites, there was no litter accumulation and the 13C values of
plants ranged from –32.4‰ to –13.4‰. 13C of terrestrial plants from Lagoa do Macuco ranged
from –32.0‰ to –13.6‰ (Table 3).

The 13C values of plants and litter reflect the dominance of C3 plants. Only 2 samples showed more
enriched values, characteristic of C4 plants, Lagenocarpus verticellatus (Cyperaceae, site MUGI;
13C = –13.4‰) and Paspalum sp. (Poaceae, site MAC; 13C = –13.6‰). Nonetheless, these spe-
cies were represented only by few individuals at these sites.

d13C of Soil Organic Matter

At forest sites, the 13C of SOM along the soil profiles varied from –28.0‰ to –24.5‰ (Figure 4A).
At grasslands, the 13C varied from –28.9‰ to –23.7‰ (Figure 4B). All soil profiles showed 13C
values characteristic of C3 plants (Figure 4). There is a tendency for more enriched 13C values (up
to –23.7‰) at deeper soil profiles to more depleted values at the surface layers. The highest differ-

Table 2 14C dates and calibrated ages from humin fraction of soil organic matter.

Laba # Dated material Depth (cm) Age (BP) Age (cal BP; 2)

Sampling site: MBT (forest)
UGAMS4270 Humin 40–50 2720 ± 25 2844–2744
UGAMS4271 Humin 90–100 6240 ± 30 7234–6954
UGAMS4272 Humin 190–200 6960 ± 30 7827–7669
Sampling site: NG1/1 (grassland)
UGAMS8195 Humin 350–360 13,280 ± 60 16,685–15,461

aUGAMS, University of Georgia, USA.

Figure 3 Soil depth ages obtained from 60 humin and charcoal 14C dates and
the resulting regression curve. Data from Pessenda et al. (2001, 2004, 2005,
2010b) and Vidotto et al. (2007). Ages obtained in this study (large black
squares) were not included in the regression analysis.
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ence between samples from the same site was 3.0‰, at site NG7. This enrichment with soil depth is
probably associated with the SOM decomposition (Macko and Estep 1984) and does not reflect
changes in relative abundance of C3 and C4 plants in past vegetation cover. These results suggest the
dominance of C3 plants since the late Pleistocene (~17,000 cal BP) at the forest and grassland sites.

Table 3 Carbon isotope composition of litter and plant samples.

Site/sample 13C (‰) Site/sample 13C (‰)

MB (forest) MJ (forest)
Litter –29.2 Litter –30.6
Palicourea fulgens –33.7
Piptadenia fruticosa –35.1 MUGI (grassland)
Sebastiania sp. –35.5 Byrsonima sp. –32.4
Stercullia speciosa –31.2 Lagenocarpus verticellatus –13.4
Calathea linharesana –35.8 Machaerium uncinatum –30.8
Eriotheca macrophylla –35.6 Vriesea sp. –30.9

MBA (forest) NMI (grassland)
Litter –28.9 Renvoizea trinii –28.9
Marlierea excoriata –33.9
Trichilia casaretti –33.8 NB (grassland)
Quararibea penduliflora –33.6 Ocotea notata –31.0
Trichilia lepidota –33.4 Tabebuia elliptica –25.3
Moldenhawera papillanthera –32.6 Kielmeyera albopunctata –29.1

Humiria balsamifera –29.0
MT1 (forest)
Litter –29.9 MAC (lake)
Astrocaryum aculeatissimum –34.3 Caperonia palustris –29.8
Carpotroche brasiliensis –32.8 Costus sp. –29.0
Amphirrhox longifolia –33.5 Tabebuia cassinoides –27.1
Heliconia sp. –34.7 Thelypteris sp. –29.2
Poliandrococos caudescens –32.0 Fuirena umbellata –28.5

Rhynchospora gigantea –30.2
NG5 (forest) Ludwigia nervosa –31.4
Litter –30.2 Paspalum sp. –13.6
Atalea humilis –32.9 Panicum sp. –30.8
Pouteria sp. –33.8 Nephrolepsis bisserrata –30.6
Cecropia sp. –33.2 Blechnum sp. –28.6

Smilax brasiliensis –30.3
CT (forest) Piper hispidum –31.0
Litter –29.6 Blechnum serrulatum –27.9

Anemia sp. –31.5
NG1 (grassland) Poaceae sp. –32.0
Bonnetia stricta –27.5 Lygodium volubile –30.2
Doliocarpus lancifolius –29.0 Sapium glandulosum –29.4
Eupatorium harvardianum –29.1 Myrsine rubra –28.6
Lagenocarpus rigidus –28.4 Pityrogramma calomelanos –30.2
Ocotea sp. –30.3 Alchornea triplinervia –29.5
Paepalanthus tortilis –29.8 Achrosticum aureum –26.5
Xyris ciliata –29.4
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Palynology

Pollen analysis resulted in 141 identified pollen and spore types. These include forest and mangrove
arboreal taxa, lianas, shrubs, herbs, aquatic macrophytes, terrestrial ferns, and tree ferns. Percent-
ages of groups and of selected pollen and spore types, and the 3 clusters identified by CONISS, are
presented in Figure 5.

Pollen Zone MAC-I (7623–4396 cal BP; 204–96 cm).

This zone is dominated by trees and shrubs (20–46%), tree ferns (0–11%), and mangrove (23–53%).
The most frequent trees and shrubs are Urticaceae/Moraceae (4–16%), Alchornea/Aparisthmium
(2–5%), Myrtaceae (0–10%), and Cecropia (0–6%). When compared to pollen zones MAC-II and
MAC-III (described below), MAC-I presents higher frequencies of trees and woody lianas from the
Fabaceae family (0–3%), and lower percentages of Melastomataceae/Combretaceae (0–4%). Some
tree taxa characteristic of the modern tabuleiro forest (Glycydendron and Hydrogaster), and woody
lianas from the Malpighiaceae family, are exclusive of this pollen zone. Other arboreal taxa charac-
teristic of the tabuleiro forest are present (Rinorea, Virola, Senefeldera), usually in higher frequen-
cies than in other zones. Pollen grains from Sapotaceae (which include Chrysophyllum, Micropho-
lis, Pouteria, and Pradosia types), an important family in tabuleiro forests, are present in almost all
samples of the zone.

Pollen zone MAC-I presents rare grains of Alnus and Podocarpus. These pollen types, especially
Alnus, probably reflect long-distance transport. Alnus acuminata is a tree from high Andean forests,
also occurring in northern Argentina. Podocarpus is a tree from Andean montane forests and from
Araucaria forests in Brazil, but may occur in lower altitudes in Amazonia and southeastern Brazil.
The presence of mangrove pollen grains in this zone is consequence of the post-glacial sea-level rise,
and the formation of a paleo-estuary at the site, according to Buso Junior et al. (these proceedings).

Two subzones may be distinguished in MAC-I based on the frequencies of tree ferns and Arecaceae.
Subzone MAC-Ia (7623–7085 cal BP; 204–150 cm) presents lower frequencies of these taxa,
Cyatheaceae ranging from 0% to 2% and Arecaceae from 0% to 2%. In subzone MAC-Ib (7085–
4396 cal BP; 150–96 cm), these taxa are more frequent, with tree ferns ranging from 5% to 11% and
Arecaceae from 1% to 3%. MAC-Ib also presents an increase in herbs and aquatic plants when com-
pared to subzone MAC-Ia. Herb frequencies range from 6–9% in MAC-Ia to 11–25% in MAC-Ib
(especially Poaceae, 5–17%, and Cyperaceae, 0–4%). Aquatic plants range from 0–1% in MAC-Ia
to 0–2% in MAC-Ib (especially Typha, 0–2%, not shown in Figure 5).

Figure 4 Variation of 13C along the soil profiles and calibrated ages from humin fraction: (A) forest sites; (B) grassland sites
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The frequencies of trees/shrubs in pollen zone MAC-I, and the relatively high frequencies of impor-
tant arboreal tropical taxa like Urticaceae/Moraceae, Alchornea/Aparisthmium, and Fabaceae
(which includes Mimosoideae, Copaifera, Dioclea, Machaerium, and Pterocarpus pollen types)
suggest the presence of a tropical forest during the entire zone (7623–4396 cal BP). The presence of
tree taxa characteristic of tabuleiro forest (Glycydendron, Hydrogaster, Rinorea, Virola,
Senefeldera, and Sapotaceae), and of woody lianas, reinforce this interpretation. Higher frequencies
of Cyatheaceae and Arecaceae in subzone MAC-Ib, suggest a change in the tropical forest compo-
sition, with more humid conditions during the interval 7085–4396 cal BP. In Brazil, the family
Cyatheaceae is represented by tree ferns especially from the genera Cyathea and Alsophila, which
are good indicators of forests with permanently humid conditions (Behling et al. 2000; Marchant et
al. 2002). These more humid conditions in MAC-Ib are also supported by increased percentages of
aquatic plants. Higher percentages of herb pollen in subzone MAC-Ib probably reflect the occupa-
tion of the margins of the paleo-estuary by C3 plants, according to the values of 13C, 15N, and C/
N presented in Buso Junior et al. (these proceedings), which indicate a mixture of C3 plants and
marine phytoplankton.

Pollen Zone MAC-II (4396–1287 cal BP; 96–72 cm)

Zone MAC-II is dominated by tree/shrub (30–70%) and herb (25–50%) pollen. The most frequent
trees and shrubs are Symplocos (15–59%), Ilex (5–7%), Melastomataceae/Combretaceae (1–8%),
Myrtaceae (1–2%), and Alchornea/Aparisthmium (0–2%). Among herbs, the most frequent are Smi-
lax (19–29%), Poaceae (0–23%), Cyperaceae (0–2%) and Sauvagesia (0–2%).

Behling and Negrelle (2001) interpreted the high percentages of Symplocos and Ilex as a succes-
sional stage before the development of the tropical forest. Some studies have shown the presence of
Smilax in the colonization of disturbed areas (Boring et al. 1981; Londré and Schnitzer 2006; Shono
et al. 2006). The presence of these pollen types associated with ecological succession may be
explained by the colonization of sites that were previously flooded and under marine influence
(Buso Junior et al, these proceedings). The presence of Symphonia, Macoubea, and Ilex, and higher
percentages of the aquatic fern Salvinia (4–10%) in pollen zone MAC-II may indicate the develop-
ment of an environment associated with episodic freshwater flooding, perhaps an alluvial forest
(Scarano et al. 1997; Rolim et al. 2006; Magnago et al. 2011). Reduction of the marine influence in
this section of the Brazilian coast after ~2500 cal BP was proposed by Martin and Suguio (1992).

Pollen Zone MAC-III (1287 cal BP – modern; 70–00 cm). 

This zone is dominated by herb and tree/shrub taxa. The most frequent trees/shrubs are Cecropia (1–
18%), Alchornea/Aparisthmium (2–9%), Myrtaceae (1–15%), Melastomataceae/Combretaceae (2–
8%), Urticaceae/Moraceae (0–7%), Ilex (0–2%), Hedyosmum (0–3%), and Myrsine (0–1%). Her-
baceous taxa are represented mainly by Cyperaceae (4–62%), Poaceae (4–29%), Smilax (0–21%),
and Sauvagesia (0–7%).

The lowermost samples in this pollen zone (70–66 cm; 1287–585 cal BP) present relatively high
percentages of aquatic plants (5–7%), especially Salvinia (1–6%). Samples from 66 cm upwards
(585 cal BP to present) record the colonization of the site by Cyperaceae (46–62%) and higher per-
centages of aquatic plants (1–27%), especially Potamogetom, Salvinia, and Nymphaeaceae/Ponte-
deriaceae, reflecting the establishment of the modern environment at the study site, which is com-
prised of the floodplain of the Barra Seca River and by a freshwater lake. The establishment of the
modern environment at ~600 cal BP is corroborated by carbon and nitrogen analyses presented in
Buso Junior et al. (these proceedings). These 13C results also indicate that the modern terrestrial
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environment around the MAC site is dominated by C3 plants, corroborating the 13C results
obtained in the present study from terrestrial plants surrounding this site (Table 3).

Late Pleistocene Climate

13C analyses of SOM at the forest sites suggest the maintenance of forest vegetation since the late
Pleistocene (~17,000 cal BP). This means that enough humidity was available for the Atlantic Forest
in northern Espírito Santo State during this period. According to Cruz et al. (2005, 2006b), the 18O
values in speleothems collected in caves of the Santa Catarina and São Paulo states suggest more
intense summer monsoon over southeastern Brazil during the late glacial (~20,000–13,000 cal BP),
a period of increased summer insolation in the Southern Hemisphere.

Holocene Climate

In the present study, carbon isotopes from SOM suggest the dominance of C3 plants during the
Holocene when palynological evidence points to a tropical forest since ~7700 cal BP. Ledru et al.
(1998) hypothesized that during the early Holocene, polar advections reached lower latitudes in
South America and were responsible for maintaining relatively wet climates. Cruz et al. (2006a)
studied carbon and oxygen isotopes in the Bt2 speleothem in Santa Catarina State, southern Brazil,
and found evidence of more frequent and intense cold episodes during the early Holocene. In the
MAC-C core, the presence of Alnus and Podocarpus pollen grains, likely originating from southern
South America and from the montane vegetation of southeastern Brazil, respectively, may indicate
that southern polar air masses reached the region of Linhares during the early Holocene, causing
frontal precipitation and leading to a humid climate that allowed the maintenance of the forest.

From subzone MAC-Ib to the beginning of zone MAC-II (7085–4176 cal BP), higher percentages
of fern spores (especially Cyatheaceae) and pollen grains from Arecaceae suggest this interval to be
the most humid period recorded in MAC-C. One possible explanation for this humidity is the grad-
ual intensification of the summer monsoon system in South America due to the gradual migration of
the Intertropical Convergence Zone (ITCZ) to southern positions, as a response to increased summer
insolation in the Southern Hemisphere (Ledru et al. 1998; Wanner et al. 2008). During this period,
high humidity levels at Linhares should be maintained during the entire year, as a consequence of
the winter humidity caused by the advection of polar air masses, which reached the region more fre-
quently than today, and increased summer precipitation due to the intensification of the monsoon
system. Based on speleothem records, Cruz et al. (2005) found a gradual increase in the monsoon
summer precipitation in southern Brazil during the Holocene, especially from ~7000 cal BP. Some
paleoenvironmental studies have already proposed this more humid period during the mid-Holocene
for the region of the Atlantic Forest biome. At the Volta Velha lowlands, Santa Catarina State, south-
ern Brazil, Behling and Negrelle (2001) inferred wetter climate during the mid-Holocene in compar-
ison with the early Holocene, and found a maximum in Cyathea spores at ~7700 cal BP. Nonethe-
less, the authors do not propose a climatic mechanism. At Serra do Caparaó, Espírito Santo State,
Veríssimo et al. (2012) found a gradual increase in the diversity and abundance of montane forest
taxa in the interval 9000–2700 cal BP, suggesting an increase in humidity or rainfall.

After ~4000 cal BP, Cyatheaceae becomes absent or rare in MAC-C. This may be explained by the
establishment of present seasonal climate, with a dry season, reflecting the modern position of the
ITCZ. This interpretation is in agreement with Ledru et al. (1998), who suggested that during this
period polar air masses became most of the time restricted to southern latitudes. It is also in agree-
ment with 18O from speleothems from southern and southeastern Brazil, which indicate that during
the mid- to late Holocene summer monsoons became more intense (Cruz et al. 2005, 2006b). As a
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consequence, from ~4000 cal BP Linhares became dryer during winters. The establishment of the
modern climate conditions in South America at ~4000 cal BP was already proposed by Marchant
and Hooghiemstra (2004), Wanner et al. (2008), and Wanner and Brönnimann (2012).

Holocene climate inferences originating from this study for the region of Linhares are illustrated in
Figure 6. During the early Holocene, polar advections provided enough humidity and allowed the
maintenance of the tropical forest. This is inferred in MAC-C from the presence of Alnus pollen
grains, which were probably transported by air masses from southern South America. During the
mid-Holocene (~7000 to ~4000 cal BP), increasing summer insolation in the Southern Hemisphere
led to increasing summer monsoons, which in conjunction with continued frequent polar advections,
caused the most humid period in the Linhares region, probably without a dry season. This is recorded
in the MAC-C core as higher percentages of Cyatheaceae spores and Arecaceae pollen grains. The
modern seasonal climate was established from ~4000 cal BP, when summer insolation reached val-
ues similar to the present, and the ITCZ migrated southward. In this seasonal climate, the existence
of a dry period during austral winter led to decreased Cyatheaceae and Arecaceae percentages.

Amazonian Taxa in Atlantic Forest

Mori and Prance (1981) suggested that the development of Cerrado and Caatinga vegetation, after
the onset of increased aridity during the Neogene, could have caused the fragmentation of a former
widespread forest body into the Amazonia and Atlantic Forest biomes. Santos et al. (2007) reached
a similar conclusion, and also suggested that more recent connections could have occurred through
the region modernly occupied by the Caatinga, during more humid periods of the Quaternary, when
floodplain and gallery forests expanded and allowed floristic exchanges between the Amazon and
Atlantic Forest. Based on genetic patterns of non-volant small mammals, Costa (2003) also sug-

Figure 6 Climatic inferences for the Linhares region during the Holocene (upper panel);
austral summer insolation at 20S (middle panel); Arecaceae and Cyatheaceae percentages,
and Alnus (black arrows) and Podocarpus (white arrow) occurrences in the MAC-C core
(lower panel). Insolation is according to Laskar et al. (2004).
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gested Pleistocene connections between Amazonia and Atlantic Forest biomes through Caatinga
and Cerrado areas during wetter climate periods. Oliveira-Filho and Ratter (1995) verified that some
tree species from Amazonia and the Atlantic Forest can penetrate the modern Cerrado area via gal-
lery forests, and suggested that these forests could have allowed the migration of Amazonia and
Atlantic Forest plant species during wetter periods of the Quaternary.

Some pollen studies at places currently occupied by Cerrado and Caatinga biomes show the expan-
sion of forest physiognomies during the late Quaternary. Ledru (1993) observed expansions of arau-
caria forests and semi-deciduous forests during the late Glacial and early Holocene, at Salitre. At
Lagoa do Caçó, Ledru et al. (2001) found increased frequencies of arboreal pollen, including
Podocarpus, during the late Pleistocene and early Holocene. De Oliveira et al. (1999) found that
during the early Holocene some forest taxa from lowland Amazonia and Atlantic Forest colonized
the region of the middle São Francisco River, in northern Bahia (Figure 1).

Some genera of trees and woody lianas characteristic of the Amazon biome, and that currently
present a divided distribution between Amazonia and Atlantic Forest, were found in the MAC-C
record since ~7500 cal BP: Glycydendron; Rinorea; Senefeldera; and Symphonia. Other genera
appear more recently: Borismene (~4600 cal BP); Macoubea (~2700 cal BP); and Bonnetia (mod-
ern). The findings show that these Amazon taxa are present in the Atlantic Forest since at least
~7500 cal BP, and suggest that a hypothesized connection between Amazonia and Atlantic Forest
occurred before this age, corroborating the conclusions of the studies presented above.

Atlantic Forest Refugia

Mori and Prance (1981) and Prance (1982) have suggested that patterns of plant taxa distribution in
the Atlantic Forest may reflect the existence of ancient forest refugia during periods of forest retrac-
tion. Prance (1982) proposed the Bahia forest refuge, a coastal area from the southern Bahia to
northern Espírito Santo states. Other authors, based on the molecular phylogeography of forest ver-
tebrates in the Atlantic Forest biome, have found genetic patterns that may be the result of events of
forest expansion and retraction during the late Quaternary (Grazziottin et al. 2006; Cabanne et al.
2008). These genetic patterns also suggest the section of the Atlantic Forest from São Paulo to
southern Bahia as an area of forest stability during the late Quaternary. As already discussed, several
paleoenvironmental studies found evidence of forest retraction of the Atlantic Forest during the late
Pleistocene and Holocene. Considering these studies and the evidence of the maintenance of the
tropical forest at Linhares since ~17,000 cal BP, we suggest that this work corroborates the hypoth-
esis about the existence of sites with forest stability during Quaternary climatic oscillations, espe-
cially for the area from the southern Bahia and northern Espírito Santo states (Prance 1982; Grazzi-
ottin et al. 2006; Cabanne et al. 2008).

CONCLUSION

The relevance of this study relies on the following aspects: (i) that the Atlantic Forest at the study
site was not subjected to forest retraction since ~17,000 cal BP, corroborating studies that suggest
this region as part of a wider area of stable forest cover during late Quaternary climatic cycles; (ii)
vegetation responses to the precession cycle during Holocene; (iii) inferences about the paleocli-
mate of the region, as relatively humid from ~17,000 cal BP to today, more humid during the inter-
val of ~7000–4000 cal BP, and with the establishment of the modern seasonal climate at ~4000 cal
BP; and (iv) the colonization of the Atlantic Forest by some Amazonian arboreal taxa since at least
~7500 cal BP.
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