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ABSTRACT

During the Last Glacial Maximum, a worldwide lowering of the eustatic sea-level occurred,
and a colder and humid forest colonized sites currently occupied by mangrove vegetation.
During this time, probably, the mangroves were colonizing the distal portion of the continental
shelf, and they migrated upward and expanded according to the post-glacial sea-level rise
and Holocene global warming. The establishment of a continuous Amazon mangrove belt
occurred during the early Holocene as a direct consequence of the marine incursion caused
by post-glacial sea-level rise possibly associated with tectonic subsidence. In the Late
Holocene, in areas influenced by the Amazon River discharge, the mangroves were replaced
by freshwater vegetation, and the coast morphology evolved from an estuarine dominated into
a rectilinear coast due to coastal progradation. Nevertheless, the marine-influenced littoral,
which is currently dominated by mangroves and salt-marsh vegetation, has persistently had
brackish water vegetation over tidal mud flats throughout the entire Holocene. Likely, the
fragmentation of this continuous mangrove line during the late Holocene was caused by the
increase of river freshwater discharge associated to the change from dry into wet climates in
the late Holocene. This caused a significant decrease of tidal water salinity in areas near the
mouth of Amazon River. These changes in the Amazon discharge are probably associated with
dry and wet periods in the northern Amazon region during the Holocene.

Keywords: Climatic changes, palynology, sea-level

RESUMO

Durante o Ultimo M4ximo Glacial ocorreu uma descida no nivel eustitico do mar, e florestas
de clima frio e umido ocuparam locais atualmente colonizados por manguezais. Durante este
momento, provavelmente os manguezais estavam ocupando a porgdo distal da plataforma
continental. O aumento na temperatura da atmosfera do planeta e a elevagio do nivel do
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mar pés-glacial causaram a migracdo e expansio dos manguezais. O estabelecimento de um
continuo cinturdo de manguezais na Amazonia ocorreu durante o Holoceno inicial como uma
direta consequéncia da incursao marinha causada pelo aumento do nivel do mar pés-glacial e
possivelmente associada a subsidéncia tectonica. No Holoceno tardio, dreas com manguezais
influenciadas pela descarga do Rio Amazonas foram substituidas por vegeta¢do de dgua doce,
e a morfologia da costa mudou de um dominio estuarino para uma costa retilinea devido
a prograda¢io. Entretanto, o litoral de influéncia marinha, que atualmente é dominado por
manguezais e pantanos salgados, tem permanecido colonizado por vegeta¢do de dgua salobra
durante todo o Holoceno. Provavelmente, a fragmentagio dessa continua linha de manguezais
durante o Holoceno Tardio foi causada pelo aumento da descarga do Rio Amazonas associada
as mudangas do clima de seco para umido. Isso causou uma significativa diminui¢do na
salinidade das dguas na foz do Amazonas. Essas mudancgas na descarga do Amazonas estio
associadas aos periodos secos e imido registrados na Amazoénia durante o Holoceno.

Palavras-chave: mudancas climdticas, nivel do mar, palinologia

1. INTRODUCTION

Approximately 75% of tropical coasts worldwide were once fringed with mangroves (Chapman,
1976). The mangroves in Brazil extend from the northern coast to the southernmost limit of the State
of Santa Catarina. However, approximately 85% of Brazilian mangroves occur along 1800 km of the
northern coast in the states of Amap4, Pard and Maranhio, which together contain 10,713 km? of
these ecosystems (Schaefter-Novelli ez a/., 1990; Vannucci, 1999; Nascimento Jr. ez a/.,2013), and hold
one of the world’s largest mangrove areas (Kjerve & Lacerda, 1993). The continuity of this mangrove
littoral is interrupted by the area influenced by the Amazon River water discharge, where vdrzea
(seasonally flooded) vegetation dominates (Cohen ez a/., 2012).

Generally, mangroves are distributed parallel to the coast with some species dominating
areas more exposed to the sea, and others occurring landward at higher elevations (Snedaker, 1982).
Mangroves follow well-known patterns (Cohen & Lara, 2003; Cohen ez a/., 2005a; Lara & Cohen,
2006), where salinity results in the exclusion of freshwater species and leads to characteristic patterns
of species zonation (Snedaker, 1978; Menezes ef a/., 2003). This zonation is a response of mangrove
species mainly to tidal inundation frequency, nutrient availability, and porewater salinity in the
intertidal zone (Hutchings & Saenger, 1987). The pore water salinity is mostly controlled by flooding
frequency (Cohen & Lara, 2003) and estuarine salinity gradients (Lara & Cohen, 2006).

The relations between mangrove and sediment geochemistry have been widely investigated
(Baltzer, 1970; Hesse, 1961; Walsh, 1974; Baltzer, 1975; Snedaker, 1982; McKee, 1993; Lacerda ez al.,
1995; Clark ez al., 1998; Youssef & Saenger, 1999; Matthijs ez al., 1999; Alongi et al., 1998; Alongi et
al., 1999; Alongi et al., 2000; Mendoza et al.,2012). An empirical model based on an ecohydrological
approach, which allowed the integration of hydrographical, topographical and physicochemical
information with vegetation characteristics of mangroves and marshes, indicates that changes in pore

water salinity are displacing the vegetation boundaries (Cohen & Lara, 2003; Lara & Cohen, 2006).
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Changes in mangrove distribution may also reflect changes in variables that control coastal
geomorphology (e.g. Blasco ez al., 1996; Lara & Cohen, 2009; Fromard ez a/.,2004). The development
of mangroves is regulated by continent-ocean interactions and their expansion may be determined
by the topography relative to sea-level (Gornitz, 1991; Cohen & Lara, 2003) and flow energy
(Woodroffe, 1989; Chapman, 1976), where mangroves preferentially occupy mud surfaces. Thus, a rise
in relative sea-level may result in mangroves migrating inland due to changes in flow energy and tidal
inundation frequency. Similarly, vegetation on elevated mudflats is subject to boundary adjustments,
since mangroves can migrate to higher locations and invade these areas (Cohen & Lara, 2003).

The potential of each variable to influence mangrove establishment will depend on the
environmental characteristics of the given littoral. Climate, hydrology, tectonic and sea-level are the
main factors controlling the modern distribution of geobotanical units along the coast of the Amazon
(Cohen ez al., 2008, 2009, 2012), while along the southeastern Brazilian littoral the mangrove
distribution might be a product of the interaction between the relative sea-level changes and the
supply of fluvial muddy sediment during the late Pleistocene-Holocene (Pessenda ez a/.,2012; Cohen
et al, unpublished data).

Then, mangroves are considered as indicators of climatic changes and sea-level oscillations
(e.g., Fromard ez al.,2004; Versteegh ez al., 2004; Alongi, 2008; Berger ez a/.,2008, Cohen ez al.,2012).
They have been almost continuously exposed to disturbance as a result of fluctuations in sea-level
since the last glacial maximum-LGM (Gornitz, 1991; Blasco ez al., 1996; Sun & Li, 1999; Behling ez
al., 2001; Alongi, 2008; Lamb ez a/., 2006; Berger ez al., 2008; Cohen e# al., 2008; Gilman ez al., 2008,
Pessenda ez al., 2012; Cohen e al., 2012).

In this framework, and based on the integration of previously published studies, this chapter
proposes to characterize changes in the Amazon coastal wetlands during the Late Pleistocene-
Holocene according to post-glacial sea-level rise and climatic changes.

2. STUDY AREA

This study considers the Pari and Amapé littoral (Figure 1), where Calgoene-Amapi,
Salin6polis, Sdo Caetano, Soure and Braganga mangroves are part of the wetland system influenced
by tidal water salinity between 30%o and 7%o. This coastal mangrove belt is interrupted by a vdrzea
vegetation area under the Amazon River influence. Lake Arari-Maraj6 Island and the town of Macapa
are located under such conditions.

The intertidal area of the marine littoral presents 3,090 km? of mangroves and 90 km? of
herbaceous flats (Cohen ez al., 2009). This littoral is characterized by peninsulas crossed by tidal
channels that link wetlands with the estuaries, in particular of the eastern coastal region of Pard
State. The main hydrodynamic features are macrotides of ~4 m range and current velocities reaching
~1.5 m s™ for spring tides (Cohen ez 4/.,1999). The modern vegetation is represented by the following
units: Amazon coastal forest (composed of terrestrial trees such as Coccoloba latifolia, Himatanthus
articulata, Anacardium occidentale, Protium heptaphyllum, Ouratea castanaefolia, Ouratea microdonta,
Tapirira guianensis, Myrcia fallax, Myrcia sylvatica, Eugenia patrisi, Cedrela odorata, Hymenaea courbaril
and Manilkara huberi), elevated herbaceous flats (e.g., Eleocharis geniculata, Fimbristylis spadicea,
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Sporobolus virginicus, Sesuvium portulacastrum), mangroves (Rhizophora mangle, Avicennia germinans,
Laguncularia racemosa), and restinga (Chrysobalanus icaco, Anacardium ocidentale, Byrsonima crassifolia)

(Cohen et al., 2005a; 2009).

igland ’Salm?pO"SBragan
5 ! - & .
Para State Peninsula
Vegetation units B
B Mangrove
Herbaceous plain
-Amazon Coastal
Forest/Varzea
_® Sampling site

Figure 1. Location of the study areas and the sea water salinity, Amazon River plume and North Brazil Current.

The fluvial littoral is represented by part of the Amapd State and the Marajé Island. The
vegetation consists of natural open areas dominated by Cyperaceae and Poaceae that widely colonize
the eastern side of the Maraj6 island. The vdrzea vegetation (a seasonally inundated floodplain and
a swamp permanently inundated by freshwater, composed of wetland species such as the palm trees
Mauritia flexuosa and Euterpe oleracea, and other species such as Hevea guianensis (Zarin et al., 2001,
Junk & Piedade, 2004; McGinley, 2008)) and Amazon Coastal Forest occur on the western side of
the Marajé Island (Cohen ez al., 2008). Mangroves are restricted to a small area (100-700 m in width)
along the northeastern coastal plain of the Marajé Island (Franga ez a/., 2012).
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3. MANGROVES DURING THE LATE PLEISTOCENE

During the Last Glacial Maximum between ~27 and ~ 20 k cal yr BP, a worldwide lowering
of the eustatic sea-level occurred, resulting from the expansion of polar ice sheets (Murray-Wallace,
2007). Evidence of the lowering of the eustatic sea-level and the resulting regression of the ocean
on the southern Brazilian coast during the LGM were obtained by Corréa (1996). From ~20 to
~19 k cal yr. BP, at ~130 m below the current mean sea-level, the southern portion of the Brazilian
continental shelf was almost entirely exposed, placing the coastline at some sites more than 100 km
east of its present position (Corréa, 1996). A similar scenario should have occurred on the shallow
continental shelf of Pard and Amap4 State (Nittrouer ez a/., 1996).

Pollen data in the eastern Pard State revealed Podocarpus trees in the coastal region during
the Late-glacial that indicate wet and markedly colder conditions at that time (Behling, 2001).
Palaeoecological records from southeastern littoral presented between >40,000 and ~23,000 cal yr
BP Ilex, Alchornea, Weinmannia, Myrsine, Symplocos, Drimys and Podocarpus pollen on a site currently
occupied by mangrove vegetation. These data suggest that in the past prevailed a colder and more
humid climate than today, with a low relative sea-level. From ~23,000 cal yr BP to ~2,200 cal yr BP
a sedimentary hiatus likely occurred, related to an erosive event associated to the post glacial sea-level
rise. Since at least ~2,200 cal yr BP, isotopes and marine diatoms indicate the return of the marine
coastal line to its current position, and consequently the development of mangrove (Pessenda ez a.,

2012).

The mangrove distribution during the late Pleistocene in the northern Brazilian littoral was
not yet recorded. Obviously, the evidences of mangrove migration according to the post-glacial sea-
level rise may be preserved below the modern sea-level and along the submerged continental shelf.
Considering that estimates of the magnitude of cooling during the LGM consistently range between
5¢ and 9°C (Wright ez al., 1989; Klein ez al., 1998; Mourguiart & Ledru, 2003; Paduano ez a.,
2003; Bush ez al., 2004; Urrego et al., 2005), probably, the mangrove development must have been
harmed during glacial time, since the low temperature is widely regarded as the primary control on the
latitudinal limits of mangroves globally (Lugo & Zucca, 1977; Tomlinson, 1986; Duke ¢ a/., 1998).
Mangrove vegetation is essentially tropical and its distribution is constrained by sensitivity to freezing
temperatures (Norman ez a/., 1984; Sherrod & McMillan, 1985; McMillan & Sherrod, 1986; Sherrod
et al., 1986; Schaeffer-Novelli ez al., 1990; Kao ez al., 2004; Stevens ez al., 2006; Stuart ez al., 2007).
Therefore, probably, the Amazonian mangrove areas must have shrunken during the LGM.

4. MANGROVES DYNAMIC DURING THE HOLOCENE

In the early Holocene, mangroves were dominated by Avicennia or co-dominated by it and
Rhizophora. Since then, a relative sea level rise of about 13.2 cm/100 year has been the most important
natural disturbance suffered by the mangrove community in Venezuela (Vilarrdbia & Rull, 2002).
According to Van der Hammen (1988), during the early Holocene the sea-level rise in the nearby
coasts of Guyana caused the replacement of savannah by mangrove vegetation, and Avicennia was the
first mangrove-forming tree to become established.



392 Paleontologia: Cenarios de Vida — Paleoclimas

The Maraj6 Island and Macapd town present a regional low water salinity produced by the
larger fresh water discharge from the Amazonas river as compared to the rivers from southeastern
Pari and northwestern Amapa littoral (Kjerfve ez al., 2002; Santos ez al.,2008). This produced a fluvial

sector and a marine-influenced littoral (Figure 1).

The marine littoral is mainly dominated by mangrove and herbaceous flats, typical of brackish
waters, while the fluvial littoral is mainly characterized by vdrzea and herbaceous vegetation, typical
of freshwaters. The mangroves are more tolerant to soil salinity than the wdrzea forest (Cohen ez al.,
2008; Gongalves-Alvim ez al., 2001), and, considering the Amazon River, the salinity is basically
controlled by position along the estuarine gradient (Lara & Cohen, 2006).

4.1 Marine littoral

Considering the Amazonian mangrove belt, this wetland has occurred continually over tidal
mud flats along the marine littoral of the Pard State during the Holocene and with deposition of
marine organic matter during at least the late Holocene along the marine littoral of the Amapa State
(Figures 1, 2d and 2h) (Cohen ez a/., 2005b, 2009; Vedel ez al., 2006; Guimaries e al., 2012). During
the early Holocene, the mangrove establishment was marked by dominance of Avicennia trees in
the Braganga littoral, while the Rhizophora expanded relative to Avicennia during the middle and
late Holocene (Vedel ez al., 2006). The pollen records indicate that mangrove areas on the Braganca
Peninsula have been mainly controlled by the relative sea-level during the Holocene (Cohen e al.,
2005a, 2005b), and the mangroves have migrated to higher elevated zones during the last decades,
suggesting a relative sea-level rise (Cohen & Lara, 2003; Cohen ez al., 2005b).

Regarding the consequences of rainfall changes during the Holocene on the marine littoral,
it should have caused changes in tidal water salinity with consequences for the mangrove structure,
since the mangrove vegetation height presents an inverse relationship with substrate salinity (Lara &
Cohen, 2006). In addition, the upper mudflats with porewater salinity between 90 and 50%o consist
mainly of Avicennia and sectors with porewater salinity around 36%o are dominated by Rhizophora

(Cohen & Lara, 2003).

4.2 Fluvial littoral

The Maraj6 Island and Macapa town present a regional low water salinity produced by the
larger fresh water discharge from the Amazon River as compared to the rivers from southeastern Pard
and northwestern Amapa littoral (Kjerfve ez a/., 2002). Pollen and isotopic data from fluvial littoral
indicate that marine influence and mangrove vegetation was wider than today on Marajé Island
(Smith ez al., 2011; figures 2b and 2f) and the Macapa littoral (Guimaries ez a/., 2012; figures 2a and
2e) between >8990-8690 and 2300-2230 and >5,560-5470 and 5290-5150 cal yr BP, respectively. In
addition, recent isotopic and pollen data from Maraj6 Island confirm this marine influence and the
presence of a tidal mud flat colonized by mangroves between >7520-7430 cal yr BP and ~3200 cal
yr BP in the central area of this island (Franga ez al., 2012; figures 2c and 2g). During the last 2300-
2230 cal yr BP the freshwater vegetation expanded on the Marajé Island (Smith ez a/., 2012; figure
2b), and the mangroves were isolated in a limited area (100-700 m width) along the northeastern
coastal plain of Marajé Island during the late Holocene (Franga ez al., 2012; figure 2¢). Similarly, the
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freshwater vegetation expanded along the littoral of Macapd, on the edge of Amazon River, during the
late Holocene (Guimaries ez al., 2012; figure 2a). Therefore, the data indicate higher marine influence
near the mouth of Amazon River during the early and middle Holocene (Figures 2d and 2h). The
temporal transition between the marine to fluvial littoral produced significant geomorphologic
changes, such as the replacement of old lagoons by lakes (Miranda ez a/., 2009; Smith ez a/., 2011).
The different chronology between Macapa and the Marajé Island coastline, showing the transition
from brackish to freshwater vegetation may be justified by the position of sampling sites along the
estuarine gradient. The littoral of Macapd, where mangroves have occurred up to 5290-5150 cal yr BP,
is on the edge of the Amazon River, while Lake Arari in Marajé Island, where the mangroves resisted
until 2300-2230 cal yr BP, is positioned at the mouth of the Amazon (Figure 1).

Salt Water
H Brackish Water

¢ Fresh Water

x Mangrove

Figure 2. Model of the Amazonian mangrove development during the Holocene in the: Macapa (2a and 2e); Marajo
Island (2b and 2f) and eastern Marajoé Island (2c and 2g).
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5. CONTROLLING FACTORS OF THE MANGROVE DYNAMIC

Understand the main factor responsible for the Amazon mangrove dynamic during the late
Pleistocene and Holocene is not straightforward. This is stated particularly considering that the region
might have been undergone to the complex interaction of several factors, mostly consisting of changes
in sea level, subsidence rates, and climate, the latter with potential to have affected the Amazon River
discharge. The most likely is that all these factors acted together and controlled the distribution of
mangrove in this region over the late Pleistocene and Holocene.

During the late Pleistocene, with a low relative sea-level, palacoecological records indicate a
colder and humid forest on sites currently occupied by mangrove vegetation (Behling, 2001; Pessenda
et al., 2012). During this time, probably, the mangroves were colonizing the distal portion of the
continental shelf, and they migrated upward according to the post-glacial sea-level rise.

The mangroves along the southeastern Para and northwestern Amapi littoral (marine littoral)
occurred continually on their current positions during the Holocene and at least the late Holocene,
respectively. The greater tidal water salinity during the early and middle Holocene in the fluvial sector
could be attributed to the episode of Atlantic sea-level rise (e.g., Suguio ez al., 1985; Tomazelli, 1990;
Rull e7 al.,1999; Hesp ez al., 2007; Angulo et al., 2008). This event also produced a marine incursion
along the Pard and Amapad littoral, where the relative sea-level-RSL stabilized at its current level
between 7000 and 5000 yr BP (e.g., Behling & Costa, 2001; Behling ez a/., 2001; Behling, 2002,
2011; Cohen e al., 2005a; Vedel ez al., 2006; Souza Filho ez al., 2006). A transgressive phase occurred
on Marajé Island in the early to middle Holocene. Subsequently, there was a return to the more
continental conditions that prevail today (Rossetti ez a/., 2008). This history of RSL fluctuations
on Marajé Island seems to have been affected by tectonic activity during the late Pleistocene and
Holocene. Hence, transgression was favored during increased subsidence, when space was created
to accommodate new sediments. Tectonic stability seems to have prevailed during the middle to
late Holocene, leading to coastal progradation that culminated with more continental conditions
prevailing on the island, and with the detachment of Marajé Island from mainland. It contributed
to the change in coastal morphology from an estuarine dominated one into a rectilinear coast. In
this process, areas with marine influence located circa 45 km inland in this island became freshwater
dominated during the late Holocene (Rossetti e a/., 2008, 2012).

Hence, the post-glacial sea-level rise, combined with tectonic subsidence, caused a marine
transgression. The tidal water salinity should have further increased due to low river discharge
resulting from increased aridity during the early and middle Holocene. If river systems are considered
to be integrators of rainfall over large areas (Amarasekera ez a/., 1997), variations in the discharge of
the Amazon River during the Holocene may be a consequence of changes in rainfall rates, as recorded
in many different regions of the Amazon Basin (e.g., Bush & Colinvaux, 1988; Absy ez a/., 1991,
Sifeddine ez al., 1994; Desjardins e al., 1996; Gouveia e al., 1997; Pessenda ez al., 1998a, 1998b, 2001;
Behling & Hooghiemstra, 2000; Freitas e a/., 2001; Sifeddine ez a/., 2001; Weng ez al., 2002; Bush ez
al., 2007; Guimaries ez al., 2012).

Climatic fluctuations in the Amazonian hydrographical region control the volume of the
Amazon River’s inflow (Haberle & Maslin, 1999; Harris & Mix, 1999). Consequently, during the
early and middle Holocene the Amazon River’s inflow was severely reduced (Maslin & Burns, 2000;
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Maslin e al., 2000). Irion ez al. (2009) suggest that during the dry period, the sea level rise caused
a backwater effect which reached far upstream, with the silting up of the Amazon valley and the
inflow of the tributaries. This allowed the development of the Amazon River floodplain in its modern
setting around ~5800 cal yr BP, when the sea level reached its present level. Afterward, with the
return of a more humid climate in the region, the greater discharge of the Amazon River promoted
the progressive reduction of water salinity. At present, the littoral of Macapa and Marajé Island is
flooded by tidal freshwater (Santos ez al., 2008; Vinzon et al., 2008; Rosario ez al., 2009) that favors
the development of freshwater vegetation (Cohen ez a/., 2012).

The modern mangrove vegetation on the fluvial sector occurs in narrow zones fed by brackish
waters carried from the southeastern Pard coastline by the northern Brazil current (Figure 1).
This water influx produces a relatively higher tidal water salinity, and is probably the cause for the
permanence of mangroves in the fluvial littoral, for example, in a narrow zone on the northeastern
part of the Marajé Island (Behling ez al., 2004; Franga ez al., 2012), where tidal water salinity is close
to ~6 %o (Santos ez al., 2008).

6. CONCLUSIONS

During the late Pleistocene, with a low relative sea-level and the glacial period, a colder and
humid forest occurred on sites currently occupied by mangrove vegetation. During this time, probably,
the mangroves were colonizing the distal portion of the continental shelf, and they migrated upward
and expanded according to the post-glacial sea-level rise and Holocene global warming.

The establishment of a continuous Amazon mangrove belt occurred during the early Holocene
as a consequence of the post-glacial sea-level rise that was favored by tectonic subsidence. The tidal
water salinity should have increased due to low river discharge resulting from increased aridity during
the early and middle Holocene. However, during the late Holocene, the littoral near the Amazon
River underwent a significant increase in fluvial influence that fragmented this mangrove belt. As
consequence, the mangrove was replaced by vdrzea vegetation, and the marine organic matter in
the sediment changed to freshwater organic matter. Likely, it was caused by the increase of river
freshwater discharge during the late Holocene, which caused a significant decrease of tidal water
salinity in Marajé Island and part of the Amapa coastline (Macapd). In Marajé Island, the coast
morphology evolved from an estuarine dominated into a rectilinear coast due to coastal progradation.
Most likely these changes in the Amazon discharge were caused by dry and wet periods recorded in
the Amazon region during the Holocene.
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